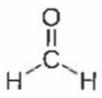
Методические указания по методам контроля МУК 4.1.4106-24 "Методика измерения массовой концентрации формальдегида в воздухе рабочей зоны фотометрическим методом" (утв. Федеральной службой по надзору в сфере защиты прав потребителей и благополучия человека 25 декабря 2024 г.)

Методические указания по методам контроля МУК 4.1.4106-24
"Методика измерения массовой концентрации формальдегида в воздухе рабочей зоны фотометрическим методом"

(утв. Федеральной службой по надзору в сфере защиты прав потребителей и благополучия человека 25 декабря 2024 г.)


Дата введения 25 марта 2025 г. Взамен МУК 4.1.2469-09

І. Общие положения и область применения

- 1.1. Настоящие методические указания по методам контроля (далее МУК) описывают порядок применения метода фотометрии для измерения в воздухе рабочей зоны массовой концентрации формальдегида в диапазоне 0,04 2,40 мг/м³.
 - 1.2. МУК носят рекомендательный характер.

II. Физико-химические свойства

2.1. Формальдегид. Структурная формула:

Брутто-формула: CH₂O. Молекулярная масса: 30,03.

Регистрационный номер CAS: 50-00-0.

2.2. Физические и химические свойства.

При нормальных условиях - бесцветный легковоспламеняющийся газ. Запах - резкий раздражающий. Температура плавления минус 118°С. Температура кипения минус 19,2°С. Плотность при нормальных условиях 815 г/дм ³. Плотность сжиженного формальдегида при температуре минус 20°С 0,8153 г/см ³ [1].

Формальдегид хорошо растворим в воде, спиртах; умеренно растворим в бензоле, эфире, хлороформе; нерастворим в петролейном эфире. Пределы взрываемости с воздухом 7-72 об.% [1].

Формальдегид склонен к полимеризации. В водных растворах находится в равновесной смеси моногидрата (99,9%) и гидратов низкомолекулярных полиоксиметиленгликолей. При продолжительном хранении водных растворов и их концентрировании происходит увеличение степени полимеризации и выпадение белого осадка нерастворимых в воде гидратов полиоксиметиленов с n>8 [1].

Формальдегид очень реакционноспособен, является сильным восстановителем. Окисляется формальдегид до муравьиной кислоты, восстанавливается до метилового спирта.

2.3. Краткая токсикологическая характеристика.

Формальдегид является ядом общетоксического действия - он поражает дыхательные пути, органы зрения и кожные покровы, оказывая раздражающий эффект на кожу и слизистые оболочки; поражает, например, нервную систему, печень, почки, быстро всасываясь и распространяясь с

кровотоком по различным органам и тканям. Формальдегид инактивирует ряд ферментов, угнетает синтез нуклеиновых кислот, нарушает обмен витамина С, обладает сенсибилизирующим, канцерогенным, тератогенным, эмбриотоксическим и мутагенным действием. Установлено, что хроническое ингаляционное воздействие формальдегида и фенола формирует опасность развития нарушений со стороны органов дыхания и сердечно-сосудистой системы [2-4].

2.4. Область применения.

Формальдегид используется для производства фенолформальдегидных, карбамидформальдегидных и меламинформальдегидных смол, которые применяются в производстве древесно-стружечной плиты (ДСтП), фанеры, мебели, формовочных материалов, вспененных пластмасс, а также в качестве вспомогательных реагентов в текстильной и кожевенной промышленности, производстве резины и цемента [5].

Формальдегид применяется в производстве других химикатов - бутандиола-1,4, триметилолпропана, неопентилгликоля, пентаэритрита, уротропина, нитрилотриуксусной кислоты и этилендиаминтетрауксусной кислоты, а также красителей, дубящих средств, лекарств, отдушек, парфюмерии. [5].

Кроме того, он используется как ингибитор коррозии, в полировке зеркал и гальванопокрытии, в производстве печатных схем и для проявки плёнки. В медицине формальдегид применяется для консервации биологических материалов и дезинфекции [5].

III. Погрешность измерений

3.1. При соблюдении условий проведения анализа и методики, изложенной в настоящих МУК погрешность 1 результатов измерений при доверительной вероятности P=0,95 не превышает значений, приведенных в таблицах 3.1 - 3.2 для соответствующих диапазонов концентраций.

Таблица 3.1

Метрологические характеристики

Анализи	Диапазон	Показатель	Показатель	Показатель	Показатель
ру смый	измерений,	повторяемости	воспроизводимост	правильност	точности
объект	$M\Gamma/M^3$	(среднеквадрати	И	и (границы, в	(P=0,95),
		ческого	(среднеквадратиче	которых	$\pm\Delta$, % oth.
		отклонения	ского отклонения	находится	ŕ
		повторяемости),	воспроизводимост	неисключенн	
		$\sigma_{\rm r}$	и),	ая	
		(0)	(0)	систематичес	
			$\left[\begin{array}{cc}\sigma_{R} & \Delta \end{array}\right]_{,\% \text{ OTH.}}$	кая	
		(Δ), % OTH.	R , 70 OIH.	погрешность	
				методики), ±	
				$\Delta_{\rm c}$, % oth.	
Воздух	От 0,04 до	2,7	5,4	21	24
рабочей	2,40 вкл.				
30НЫ					

Таблица 3.2

Диапазон измерений, значения пределов повторяемости и воспроизводимости при доверительной вероятности P=0,95

Анализируемый	Диапазон	Предел повторяемости,	Предел
объект	измерений, мг/м³	(для двух результатов	воспроизводимости,

		параллельных определений), r, % отн.	(для двух результатов анализа), R, % отн.
Воздух рабочей	От 0,04 до 2,40 вкл.	7,4	14
30НЫ			

IV. Метод измерений

4.1. Измерения массовой концентрации формальдегида в пробах воздуха рабочей зоны выполняют методом фотометрии.

Метод основан на реакции взаимодействия формальдегида с ацетилацетоном в среде уксуснокислого аммония и последующем фотометрическом измерении оптической плотности окрашенного в желтый цвет продукта реакции.

- 4.2. Количественное определение проводят методом абсолютной градуировки. В соответствии с настоящими МУК оценивают максимальные разовые массовые концентрации формальдегида в воздухе рабочей зоны.
- 4.3. Концентрирование вещества из воздуха рабочей зоны осуществляют с помощью поглотительного прибора, заполненного поглотительным раствором.
- 4.4. Нижний предел измерения в анализируемом объеме пробы (5 см 3) 1 мкг, в воздухе 0,04 мг/м 3 .
- 4.5. Измерению формальдегида не мешают ацетальдегид, пропионовый и трихлоруксусный альдегиды, эпихлоргидрин, толуол, ксилол, фенол, ацетон, аммиак, хлороформ, муравьиная кислота, изобутилен, изопрен, диметиддиоксан, спирты: метиловый, этиловый, изопропиловый, бутиловый, диацетоновый.

V. Средства измерений, реактивы, вспомогательное оборудование, устройства и материалы

5.1. При выполнении измерений и подготовке проб применяют средства измерений, реактивы, вспомогательное оборудование, устройства и материалы, приведенные в таблицах 5.1 - 5.3.

Таблица 5.1

Средства измерений

Наименование средств	Обозначение и наименование документов, технические	
измерения	характеристики	
Фотометр	Внесено в Реестр "Утверждённые типы средств измерений"	
фотоэлектрический или	Федерального информационного фонда по обеспечению	
спектрофотометр	единства измерений. Возможность измерений при длине волны	
	400 нм для фотометра фотоэлектрического или при длине волны	
	412 нм для спектрофотометра, предел допускаемой абсолютной	
	погрешности измерения коэффициентов пропускания не более	
	±1%, предел допускаемой основной абсолютной погрешности	
	установки длины волны не более ±3 нм	
Весы лабораторные	Внесено в Реестр "Утверждённые типы средств измерений"	
	Федерального информационного фонда по обеспечению	
	единства измерений, специальный (I) или высокий (II) класс	
	точности, цена деления 1 мг, пределы допускаемой	
	погрешности взвешивания в эксплуатации при измерении 200 г	
	не более ±30 мг, ГОСТ Р 53228-2008 или ГОСТ OIML R 76-1-	
	2011	
Меры массы (при	ГОСТ OIML R 111-1-2009	

необходимости)		
Пробоотборное устройство	Внесено в Реестр "Утверждённые типы средств измерений"	
	Федерального информационного фонда по обеспечению	
	единства измерений, расход воздуха 2 дм ³ /мин с допускаемой	
	относительной погрешностью измерения расхода воздуха не	
	более ±5% при расходе воздуха	
	2 дм ³ /мин, ГОСТ Р 51945-2002	
Секундомер	Внесено в Реестр "Утверждённые типы средств измерений"	
	Федерального информационного фонда по обеспечению	
	единства измерений, цена деления секундной шкалы не более	
	0,2 с, при измерении интервала времени до 30 мин в диапазоне	
	рабочих температур от минус 20°C до плюс 40°C допускаемая	
	основная погрешность измерения не более ±2,5 с	
Колбы мерные	Класс точности не ниже 2; номинальная вместимость 25 см ³ , 1	
	дм ³ ; ГОСТ 1770-74	
Дозаторы пипеточные	Внесено в Реестр "Утверждённые типы средств измерений"	
	Федерального информационного фонда по обеспечению	
	единства измерений, диапазон объема дозирования 100- 1000,	
	1000 - 10 000 мм ³ с пределом допускаемой систематической	
	составляющей основной относительной погрешности не более	
	±2,5% и пределом допускаемого среднеквадратичного	
	отклонения случайной составляющей относительной	
	погрешности не более 3%	
Пипетки градуированные	Номинальная вместимость 0,5 см ³ , 1 см ³ , 5 см ³ , 10 см ³ , предел	
	допускаемой погрешности объема пипетки не более ±1%, ГОСТ	
	29227-91	
Пробирки мерные со	Номинальная вместимость 10 см ³ , 15 см ³ , с взаимозаменяемым	
шлифом	конусом 14/23, из химически стойкого стекла, ГОСТ 1770-74	
Цилиндр мерный	Номинальная вместимость 500 см ³ , ГОСТ 1770-74	
Прибор/приборы для	Внесено в Реестр "Утверждённые типы средств измерений"	
измерения атмосферного	Федерального информационного фонда по обеспечению	
давления, температуры и	единства измерений	
относительной влажности		
воздуха		
Применание: попускается ис	пользование средств измерений с зналогипными или луппими	

Примечание: допускается использование средств измерений с аналогичными или лучшими метрологическими и техническими характеристиками.

Таблица 5.2

Реактивы

Наименование реактива	Обозначение и наименование документов, технические	
	характеристики	
Стандартный образец состава	Массовая концентрация формальдегида 1,00 мг/см ³ ,	
водного раствора формальдегида	границы относительной погрешности аттестованного	
	значения концентрации не более ±1%, при P=0,95	
Ацетилацетон	Квалификация "ч.д.а.", массовая доля основного	
	компонента не менее 99,5%, ГОСТ 10259-78	
Аммоний уксуснокислый	Квалификация "ч.д.а.", массовая доля основного	
	компонента не менее 98,0%, ГОСТ 3117-78	
Кислота уксусная	Квалификация "х.ч. ледяная"; массовая доля основного	
	компонента не менее 99,8%, ГОСТ 61-75	
Вода для лабораторного анализа	ГОСТ Р 52501-2005	

(далее по тексту вода			
деионизованная)			
Примечание: допускается использование реактивов с более высокой квалификацией, не			
требующих дополнительной очистки растворителей.			

Таблица 5.3

Вспомогательное оборудование, устройства, материалы

Наименование вспомогательного	Обозначение и наименование документов,
оборудования, устройств, материалов	технические характеристики
Поглотительные приборы Рихтера	Ориентировочные габариты 45х180 мм
(скоростные)	
Термостат суховоздушный, шкаф	Возможность поддержания температуры на уровне
сушильный или баня водяная	плюс 65°C с точностью не менее ±2,0°C, ГОСТ ІЕС
	61010-2-010-2013, ГОСТ 12.1.030-81, ГОСТ
	12.2.007.0-75
Колба круглодонная	Тип К, номинальная вместимость
	250 см ³ , с взаимозаменяемым конусом 29/32, из
	термически стойкого стекла, ГОСТ 25336-82
Колба коническая	Номинальная вместимость 100 см ³ ,
	250 см ³ , 1000 см ³ , из термически стойкого стекла,
	ГОСТ 25336-82
Переходник насадка Вюрца	Тип Н1, с взаимозаменяемыми конусами керна
	насадки 29/32, муфты насадки 14/23 и керна
	отводной трубки 14/23, из термически стойкого
	стекла, ГОСТ 25336-82
Холодильник для перегонки	С взаимозаменяемыми конусами муфты и керна
	14/23, из термически стойкого стекла, ГОСТ 25336-
	82
Алонж	Тип АИ либо АИО, с взаимозаменяемым конусом
	муфты 14/23, из термически стойкого стекла, ГОСТ
	25336-82
Термометр лабораторный с конусным	Возможность измерения температуры в диапазоне
шлифом	плюс 100 - 150°C, взаимозаменяемый конус шлифа
	14/23, ΓΟCT 28498-90
Бутыли из темного стекла для хранения	Номинальная вместимость 100 см ³ , 1000 см ³
химических реактивов	
Холодильный прибор	Возможность поддержания температуры на уровне
	плюс 4±2°С, ГОСТ 16317-87
Кипелки лабораторные	-
Песочная баня	-
Силиконовые шланги для соединений	-
Стеклянные заглушки для приборов	-
Рихтера	
	вспомогательного оборудования, устройств и
материалов с аналогичными или лучшими	техническими характеристиками.

VI. Требования безопасности

6.1. При выполнении измерений необходимо соблюдать требования техники безопасности при работе с токсичными, едкими и легковоспламеняющимися веществами в соответствии с ГОСТ 12.1.005-88 и ГОСТ 12.1.007-76, требования по электробезопасности при работе с

электроустановками в соответствии с ГОСТ 12.1.019-2017, а также требования, изложенные в технической документации на фотометр фотоэлектрический.

- 6.2. Помещение должно соответствовать требованиям пожаробезопасности в соответствии с ГОСТ 12.1.004-91 и иметь средства пожаротушения в соответствии с ГОСТ 12.4.009-83. Организуется обучение работников безопасности труда.
- 6.3. Измерения в соответствии с настоящими МУК может выполнять специалист, имеющий опыт работы на фотометре фотоэлектрическом (спектрофотометре), освоивший данную методику и подтвердивший экспериментально соответствие получаемых результатов нормативам контроля погрешности измерений.
- 6.4. Помещение лаборатории должно быть оборудовано приточно-вытяжной вентиляцией. При выполнении измерений концентрация вредных веществ в воздухе рабочей зоны не должна превышать гигиенических нормативов².

VII. Условия измерений

- 7.1. При выполнении измерений соблюдают следующие условия:
- процессы приготовления растворов и подготовки проб к анализу проводят при температуре воздуха плюс $20^{\pm}5$ °C, относительной влажности воздуха не более 80% и атмосферном давлении 84 106,7 кПа (630 800 мм.рт.ст.);
- выполнение измерений на фотометре фотоэлектрическом (спектрофотометре) проводят в условиях, рекомендованных технической документацией к прибору.

VIII. Подготовка к выполнению измерений

- 8.1. Измерениям предшествуют следующие операции: подготовка фотометра фотоэлектрического (спектрофотометра) к работе; перегонка ацетилацетона; приготовление растворов; установление градуировочной характеристики.
- 8.2. Подготовка фотометра фотоэлектрического (спектрофотометра) к работе. Подготовку фотометра фотоэлектрического (спектрофотометра) к работе проводят в соответствии с руководством по эксплуатации используемого оборудования.
 - 8.3. Приготовление растворов.
- 8.3.1. Перегонка ацетилацетона. Ацетилацетон перегоняют, собирая фракцию с температурой кипения плюс 138 140°С (при атмосферном давлении 101,3 кПа (760 мм.рт.ст.). Перегнанный ацетилацетон помещают в бутыль из темного стекла и хранят в холодильнике не более 1 мес.
- 8.3.2. Ацетилацетоновый реактив. В мерную колбу вместимостью 1 дм³ вносят деионизованную воду примерно на 1/2 объема колбы. Взвешивают 200,00 г аммония уксуснокислого, вносят в колбу с водой и тщательно перемешивают до полного растворения.

Далее в раствор дозатором (пипеткой) добавляют 5 см 3 уксусной кислоты и 4 см 3 перегнанного ацетилацетона (п. 8.3.1), тщательно перемешивают. Раствор доводят до метки деионизованной водой и снова перемешивают. Полученный ацетилацетоновый реактив переносят в бутыль из темного стекла, выдерживают не менее 12 ч. перед применением. Реактив хранят в холодильнике при температуре плюс $4^{\pm}2^{\circ}$ С. Реактив рекомендуется хранить не более двух недель при условии уточнения градуировочной зависимости через 1 неделю хранения в приведенных условиях.

- 8.3.3. Поглотительный раствор. В колбу на $1~{\rm дm}^3$ мерным цилиндром вносят равные объемы (до $500~{\rm cm}^3$) ацетилацетонового реактива и деионизованной воды. Поглотительный раствор тщательно перемешивают и используют в день приготовления.
- 8.3.4. Исходный раствор формальдегида с массовой концентрацией 0,5 мг/см³. В мерную колбу вместимостью 25 см³ вносят деионизованную воду примерно на 1/3 объема колбы. Необходимое количество ампул стандартного образца состава водного раствора формальдегида с массовой концентрацией 1 мг/см³ объединяют в отдельной емкости, пипетками (дозатором) за два приема отбирают 12,5 см³ и вносят в колбу с водой. Тщательно перемешивают, доводят до метки

деионизованной водой и снова перемешивают.

Исходный раствор формальдегида хранят в холодильнике при температуре плюс $4^{\pm}2^{\circ}$ C. Раствор устойчив в течение 6 мес.

- 8.3.5. Рабочий раствор формальдегида с массовой концентрацией 100 мкг/см³. В мерную колбу вместимостью 25 см³ вносят деионизованную воду примерно на 1/3 объема колбы, дозатором (пипеткой) вносят 5 см³ исходного раствора формальдегида с массовой концентрацией 0,5 мг/см³ (п. 8.3.4), тщательно перемешивают, доводят до метки деионизованной водой и снова перемешивают. Раствор используют в день приготовления.
- 8.3.6. Рабочий раствор формальдегида с массовой концентрацией 10 мкг/см³. В мерную колбу вместимостью 25 см³ вносят деионизованную воду примерно на 1/3 объема колбы, дозатором (пипеткой) вносят 0,5 см³ исходного раствора формальдегида с массовой концентрацией 0,5 мг/см³ (п. 8.3.4), тщательно перемешивают, доводят до метки деионизованной водой и снова перемешивают. Раствор используют в день приготовления.
- 8.3.7. Приготовление основных растворов для градуировки. Основные растворы с массовыми концентрациями формальдегида от 0,2 до 12 мкг/см³ готовят в мерных колбах вместимостью 25 см³. В колбы предварительно вносят деионизованную воду примерно на 1/3 объема колбы, затем дозатором (пипеткой) вносят соответствующие объемы рабочих растворов формальдегида (п. 8.3.5, и. 8.3.6) (табл.8.1). Растворы перемешивают, доводят до метки деионизованной водой и снова тщательно перемешивают. Основные растворы используют в день приготовления.

Таблица 8.1 Приготовление основных растворов формальдегида

N	Объем рабочего	Объем рабочего	Концентрация	Концентрация
	раствора	раствора	формальдегида в	формальдегида в
	формальдегида с	формальдегида с	основном растворе	градуировочном
	массовой	массовой	для градуировки,	растворе,
	концентрацией 10	концентрацией 100	мкг/см ³	мкг/см ³
	$MK\Gamma/CM^3$, CM^3	$MK\Gamma/CM^3$, CM^3		
1	1,0	-	0,4	0,2
2	1,5	-	0,6	0,3
3	2,5	-	1	0,5
4	5,0	-	2	1,0
5	-	1	4	2,0
6	-	1, 5	6	3,0
7	-	2,0	8	4,0
8	-	2,5	10	5,0
9		3,0	12	6,0

- 8.3.8. Приготовление градуировочных растворов.
- 8.3.8.1. Градуировочные растворы готовят в мерных пробирках вместимостью $10\,$ см 3 : дозатором (пипеткой) последовательно вносят $2,5\,$ см 3 основного раствора (п. 8.3.7) и $2,5\,$ см 3 ацетилацетонового реактива (п. 8.3.2), плотно закрывают притертыми пробками, содержимое тщательно перемешивают.

Массовые концентрации формальдегида в градуировочных растворах составляют от 0,2 до 6,0 мкг/см 3 (табл. 8.1). Для каждой концентрации формальдегида готовят серию из 5 градуировочных растворов. Растворы устойчивы в течение двух суток при условии хранения в холодильнике при температуре плюс $4^{\pm}2^{\circ}$ С.

- 8.3.8.2. Градуировочные растворы термостатируют при температуре плюс 65°C в течение 15 мин. Далее охлаждают до комнатной температуры и фотометрируют в соответствии с п. 10.2.
 - 8.3.9. Раствор сравнения. В мерную пробирку вместимостью 10 см³ дозатором (пипеткой)

последовательно вносят 2,5 см³ деионизованной воды и 2,5 см³ ацетилацетонового реактива (п. 8.3.2). Пробирку плотно закрывают притертой пробкой, содержимое тщательно перемешивают и термостатируют при температуре плюс 65°C в течение 15 мин. Далее охлаждают до комнатной температуры. Раствор сравнения готовят одновременно с градуировочными растворами или анализируемыми пробами.

8.4. Установление градуировочной характеристики. Градуировочную характеристику, выражающую линейную (с угловым коэффициентом) зависимость величины оптической плотности растворов от массовой концентрации формальдегида в анализируемом растворе, устанавливают методом абсолютной калибровки.

Для этого каждую серию градуировочных растворов (п. 8.3.8), последовательно в порядке увеличения массовой концентрации формальдегида фотометрируют относительно раствора сравнения (п. 8.3.9) в соответствии с п. 10.2.

По полученным результатам строят два градуировочных графика в координатах: массовая концентрация формальдегида в растворе, мкг/см 3 - оптическая плотность раствора.

Первый градуировочный график соответствует области более низких концентраций - от 0,2 до 2,0 мкг/см 3 , второй - более высоких концентраций - от 2,0 до 6,0 мкг/см 3 .

ІХ. Отбор и хранение проб

- 9.1. Отбор проб осуществляют в соответствии с документами по стандартизации ³.
- 9.2. Для осуществления контроля воздуха рабочей зоны воздух с объемным расходом 2,0 дм 3 /мин аспирируют в течение 15-30 мин (в зависимости от ожидаемого уровня концентраций) с помощью автоматического аспиратора через поглотительный прибор Рихтера, заполненный с помощью пипетки (дозатора) 12 см 3 поглотительного раствора (п. 8.3.3).

Для определения формальдегида в воздухе рабочей зоны на уровне $0.04~{\rm Mr/m}^{\,3}$ необходимо отобрать $60~{\rm дm}^{\,3}$ воздуха.

9.3. После отбора проб воздуха, поглотительные приборы заглушают. Отобранные пробы устойчивы в течение двух суток при условии хранения в холодильнике при температуре плюс 4^{\pm} 2°C.

Х. Выполнение измерений

10.1. Поглотительные растворы с отобранной пробой количественно переносят в мерные пробирки вместимостью 15 см 3 . Для каждого поглотительного раствора проводят два параллельных измерения: в две мерные пробирки вместимостью 10 см 3 вносят по 5 см 3 поглотительного раствора, пробирки закрывают притертыми пробками и термостатируют при температуре плюс 65°C в течение 15 мин.

Одновременно готовят раствор сравнения (п. 8.3.9).

Растворы охлаждают до комнатной температуры.

10.2. Измерение оптической плотности анализируемых растворов осуществляют относительно раствора сравнения (п. 8.3.9) в кювете с толщиной оптического слоя 10 мм при длине волны 400 нм в случае использования фотометра фотоэлектрического или при длине волны 412 нм в случае использования спектрофотометра.

XI. Обработка результатов анализа

11.1. Массовую концентрацию формальдегида в пробе воздуха рассчитывают по формуле (1):

$$C = \frac{C_{\text{п.р.}} \cdot V_{\text{п.р.}}}{V_{\text{возд}}}$$
, (1)

где: C - массовая концентрация формальдегида в пробе воздуха рабочей зоны, мг/м³;

 $C_{\text{п.р.}}$ - массовая концентрация формальдегида в отобранной пробе (поглотительном растворе после отбора пробы воздуха), найденная по градуировочной характеристике, мкг/см³;

 $V_{\text{п.р.}}$ - объем поглотительного раствора, равный 12 см 3 ;

 $V_{\text{возд}}$ - объем отобранного воздуха, дм 3 , приведенный к стандартным условиям (P = 101,33 кПа, 760 мм.рт.ст.; t = 20°C) по формуле (2):

$$V_{\text{возд}} = \frac{P \cdot (273 + t) \cdot V_p}{760 \cdot (273 + T)}$$
, (2)

где: $V_{\rm p}$ - объем воздуха при условиях отбора (при отборе проб), дм 3 ;

Р - атмосферное давление воздуха в момент отбора, мм.рт.ст.;

t - температура при стандартных условиях - плюс 20°С;

Т - температура воздуха в момент отбора проб, °С.

11.2. После проведения количественного расчета массовой концентрации формальдегида вычисляют среднее арифметическое двух параллельных измерений C_1 , C_2 по формуле (3):

$$C = \frac{C_1 + C_2}{2}$$
, (3)

где: С - массовая концентрация формальдегида в пробе воздуха рабочей зоны, мг/м³.

Результат контроля повторяемости считают удовлетворительным, если выполняется неравенство (4):

$$\left| C_1 - C_2 \right| \le \frac{C_1 + C_2}{200} \cdot r$$

где: C_1 и C_2 - значения параллельных измерений, мг/м³;

r - предел повторяемости (допускаемое расхождение между результатами единичных измерений в условиях повторяемости), приведенный в таблице 3.2,%.

При превышении предела повторяемости определение проводят еще раз. При повторном превышении выясняют причины, приводящие к получению неудовлетворительных результатов, и устраняют их.

XII. Оформление результатов измерений

12.1. Результат количественного анализа представляют в виде формулы (5):

$$\left(C \pm \frac{\Delta}{100} \cdot C\right)$$
, MF/M³, P=0, 95

где: С - массовая концентрация формальдегида в воздухе рабочей зоны, мг/м³;

- Δ относительная погрешность определения массовой концентрации формальдегида в воздухе рабочей зоны, приведенная в таблице 3.1,%.
 - 12.2. Результат измерений должен иметь тот же десятичный разряд, что и погрешность.
- 12.3. Если установленное содержание формальдегида менее нижней границы диапазона определяемых концентраций, результат анализа представляют в виде: "содержание формальдегида

XIII. Контроль качества результатов измерений

- 13.1. Контроль погрешности и воспроизводимости измерений осуществляют в соответствии с документами по стандартизации 5 .
- 13.2. Показатели повторяемости и воспроизводимости, пределы повторяемости и воспроизводимости при P = 0,95 приведены в таблицах 3.1 и 3.2.
 - 13.3. Контроль стабильности градуировочной характеристики.

Для контроля стабильности градуировочной характеристики готовят 3 контрольных раствора формальдегида с содержанием, относящимся к началу, середине и концу градуировочной характеристики. Последовательно анализируют контрольные пробы, проводят определение массовой концентрации формальдегида по градуировочному графику, сравнивают результаты анализов со значением его концентрации в контрольном растворе, рассчитанной по процедуре приготовления.

Стабильность градуировочной характеристики считают удовлетворительной, если для контрольной точки выполняется неравенство (6):

$$\left| \frac{C_0 - C_{\Gamma}}{C_0} \right| \cdot 100\% \leq K_{\Gamma}$$

где: C_0 - C_r - расхождение между рассчитанным по процедуре приготовления значением массовой концентрации (C_0) и массовой концентрацией, определенной с помощью градуировочной характеристики (C_r), мкг/см³;

 $K_{\rm r}$ - норматив контроля стабильности і-радуировочной характеристики. $K_{\rm r}$ =15% отн.

Контроль стабильности градуировочной характеристики осуществляется не реже одного раза в три месяца, а также при смене реактивов или изменении условий анализа. Градуировочная характеристика считается стабильной, если отклонение не превышает ${}^{\pm}$ К $_{\rm r}$. Если условие не выполняется, эксперимент повторяют. Если результат повторного сравнения неудовлетворителен, то выясняют причины, приводящие к получению неудовлетворительных результатов контроля, и устраняют их. В случае невозможности устранения причин, приводящих к превышению норматива контроля стабильности градуировочной характеристики, градуировку проводят заново.

13.4. Контроль внутрилабораторной прецизионности.

Для контроля внутрилабораторной прецизионности используют образцы для оценивания. В качестве образцов для оценивания используют водные растворы формальдегида с заданным значением массовой концентрации. Две параллельные пробы анализируют в соответствии с настоящими МУК, максимально варьируя условия проведения анализа: в разное время, разными исполнителями, с использованием разных наборов посуды и реактивов.

Внутрилабораторную прецизионность результатов измерений считают удовлетворительной, если расхождение между результатами анализа, полученными в одной лаборатории при разных условиях, не превышает предела внутрилабораторной прецизионности, т.е. выполняется неравенство (7):

$$C_{max}-C_{min} \leq \frac{C_{max}+C_{min}}{200} \cdot R_{\pi}, (7)$$

где: C_{max} , C_{min} - максимальный и минимальный результаты анализа при контроле внутрилабораторной прецизионности, мкг/см 3 ;

 $C_{\,
m max}$ - $C_{\,
m min}$ - фактическое расхождение между результатами анализа, мкг/см 3 ;

 $R_{\rm Л}$ - предел внутрилабораторной прецизионности (% отн.), рассчитанный по формуле (8):

$$R_{\rm J}=0.84\cdot R$$
, (8)

где: R - предел воспроизводимости, приведенный в таблице 3.2,% отн.

При превышении предела внутрилабораторной прецизионности могут быть использованы методы оценки приемлемости результатов анализа в соответствии с документами по стандартизации 6 .

Контроль внутрилабораторной прецизионности проводят при необходимости в соответствии с графиком, утвержденным в лаборатории, но не реже 1 раза в 6 месяцев.

13.5. Контроль точности результатов измерений.

Оперативный контроль процедуры анализа проводят с использованием образцов для контроля. В качестве образцов для контроля применяют водные растворы формальдегида с заданным значением массовой концентрации.

Две параллельные пробы анализируют в точном соответствии с настоящими МУК. По градуировочному графику рассчитывают массовую концентрацию формальдегида в каждой из двух проб (C_1 и C_2). Если расхождение между полученными значениями массовых концентраций не превышает г (%), приведенный в таблице 3.2, в качестве результата контрольного измерения принимают результат анализа образца для контроля, рассчитанный как среднее арифметическое двух параллельных измерений по формуле (9):

$$C = \frac{C_1 + C_2}{2}$$
, (9)

где: C - результат контрольного измерения массовой концентрации формальдегида в образце для контроля, мкг/см 3 .

Результат контрольной процедуры K_{κ} рассчитывают по формуле (10):

$$K_{\kappa}=C-C_{OK}$$
, (10)

где: C_{OK} - заданное значение массовой концентрации формальдегида в образце для контроля, мкг/см 3 .

Норматив контроля К рассчитывают по формуле (11):

$$K = \frac{\Delta \cdot C_{OK}}{100}$$
, (11)

где: $\pm \Delta$ - показатель точности результатов анализа (границы относительной погрешности методики измерений), приведенный в таблице 3.1,%.

Процедуру анализа признают удовлетворительной при выполнении условия (12):

$$|K_K|^{\leq}K$$
 (12)

Если условие не выполняется, эксперимент повторяют. Если результат повторного измерения неудовлетворителен, то выясняют причины, приводящие к получению неудовлетворительных результатов, и принимают меры по их устранению.

Контроль точности результатов измерений проводят при необходимости в соответствии с графиком, утвержденным в лаборатории, но не реже 1 раза в 6 месяцев.

13.6. Контроль воспроизводимости результатов измерений.

Для контроля воспроизводимости результатов измерений используют образцы для оценивания, которые анализируют в соответствии с настоящими МУК. В качестве образцов для оценивания используют пробы воздуха, которые отбираются сотрудниками разных лабораторий единовременно в одной точке отбора в соответствии с пунктом 9.2.

Расхождение между полученными результатами измерений оценивается по условию (13):

$$\frac{\left|\overline{C}_{1}-\overline{C}_{2}\right|}{\overline{C}}\cdot 100 \leq R_{B}$$
, (13)

где: $R_{\rm B}$ - норматив контроля воспроизводимости с учетом отбора проб воздуха, который рассчитывается по формуле (14):

$$R_{\rm B}=1,41.\Delta, (14)$$

где: Δ - показатель точности методики измерений, приведенный в таблице 3.1,%;

- \overline{C}_1 , \overline{C}_2 результаты измерений массовых концентраций формальдегида в образце для оценивания, полученные путем усреднения двух параллельных результатов измерений отобранных проб, мг/м 3 ;
- \overline{C} среднее значение массовой концентрации формальдегида в образце для оценивания (мг/м 3), рассчитанное по формуле (15):

$$\overline{C} = \frac{\overline{C}_1 + \overline{C}_2}{2}$$
, (15)

Если выполняется условие (13), то воспроизводимость измерений считается удовлетворительной.

При превышении норматива контроля воспроизводимости эксперимент повторяют, при повторном превышении указанного норматива выясняют причины и по возможности их устраняют.

Контроль воспроизводимости проводят по мере необходимости.

Нормативные и методические документы

- 1. Федеральный закон от 30.03.1999~N~52-Ф3~"О~ санитарно-эпидемиологическом благополучии населения".
- 2. СанПиН 1.2.3685-21 "Гигиенические нормативы и требования к обеспечению безопасности и (или) безвредности для человека факторов среды обитания".
- 3. ГОСТ Р ИСО 5725-1-2002 "Точность (правильность и прецизионность) методов и результатов измерений. Часть 1. Основные положения и определения".
- 4. ГОСТ Р ИСО 5725-2-2002 "Точность (правильность и прецизионность) методов и результатов измерений. Часть 2. Основной метод определения повторяемости и воспроизводимости стандартного метода измерений".
- 5. ГОСТ Р ИСО 5725-3-2002 "Точность (правильность и прецизионность) методов и результатов измерений. Часть 3. Промежуточные показатели прецизионности стандартного метода измерений".
- 6. ГОСТ Р ИСО 5725-4-2002 "Точность (правильность и прецизионность) методов и результатов измерений. Часть 4. Основные методы определения правильности стандартного метода измерений".
- 7. ГОСТ Р ИСО 5725-5-2002 "Точность (правильность и прецизионность) методов и результатов измерений. Часть 5. Альтернативные методы определения прецизионности стандартного метода измерений".
- 8. ГОСТ Р ИСО 5725-6-2002 "Точность (правильность и прецизионность) методов и результатов измерений. Часть 6. Использование значений точности на практике".
 - 9. ГОСТ Р 53228-2008 "Весы неавтоматического действия. Часть 1. Метрологические и

технические требования. Испытания".

- 10. ГОСТ OIML R 76-1-2011 "Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания".
- 11. ГОСТ OIML R 111-1-2009 "Гири классов точности Е (индекса 1), Е (индекса 2), F (индекса 1), F (индекса 2), M (индекса 1), M (индекса 2-3) и М (индекса 3). Часть 1. Метрологические и технические требования".
 - 12. ГОСТ Р 51945-2002 "Аспираторы. Общие технические условия".
- 13. ГОСТ 1770-74 "Посуда мерная лабораторная стеклянная. Цилиндры, мензурки, колбы, пробирки. Общие технические условия".
- 14. ГОСТ 29227-91 "Посуда лабораторная стеклянная. Пипетки градуированные. Часть 1. Общие требования".
 - 15. ГОСТ 10259-78 "Реактивы. Ацетилацетон. Технические условия".
 - 16. ГОСТ 3117-78 "Реактивы. Аммоний уксуснокислый. Технические условия".
 - 17. ГОСТ 61-75 "Реактивы. Кислота уксусная. Технические условия".
 - 18. ГОСТ Р 52501-2005 "Вода для лабораторного анализа. Технические условия".
- 19. ГОСТ ІЕС 61010-2-010-2013 "Безопасность электрических контрольно-измерительных приборов и лабораторного оборудования. Часть 2-010. Частные требования к лабораторному оборудованию для нагревания материалов".
 - 20. ГОСТ 12.1.030-81 "Электробезопасность. Защитное заземление, зануление".
 - 21. ГОСТ 12.2.007.0-75 "Изделия электротехнические. Общие требования безопасности".
- 22. ГОСТ 25336-82 "Посуда и оборудование лабораторные стеклянные. Типы, основные параметры и размеры".
- 23. ГОСТ 28498-90 "Термометры жидкостные стеклянные. Общие технические требования. Методы испытаний".
- 24. ГОСТ 16317-87 "Приборы холодильные электрические бытовые. Общие технические условия".
- 25. ГОСТ 12.1.005-88 "Общие санитарно-гигиенические требования к воздуху рабочей зоны".
- 26. ГОСТ 12.1.007-76 "Вредные вещества. Классификация и общие требования безопасности".
- 27. ГОСТ 12.1.019-2017 "Электробезопасность. Общие требования и номенклатура видов защиты".
 - 28. ГОСТ 12.1.004-91 "Пожарная безопасность. Общие требования".
- 29. ГОСТ 12.4.009-83 "Пожарная техника для защиты объектов. Основные виды. Размещение и обслуживание".
- 30. ГОСТ 12.1.005-88 "Общие санитарно-гигиенические требования к воздуху рабочей зоны".

Библиографические ссылки

- 1. Краткая химическая энциклопедия / Под. ред. И.Л. Кнунянц. М.: Советская Энциклопедия, 1967. Т. 5.
- 2. New results on formaldehyde: the 2nd International Formaldehyde Science Conference (Madrid, 19-20 April 2012).
- 3. Тараненко Л.А. Научно-методические основы гигиенического и клинического анализа влияния факторов риска производственной среды химического предприятия на организм работающих и оптимизация лечебно-профилактических мероприятий.: дис. ... док. мед. наук: 14.02.01, 14.02.04: Пермь, 2014. 260 с.
- 4. Маклакова О.А., Устинова О.Ю. Особенности кардиореспираторной патологии, ассоциированной с хроническим аэрогенным воздействием фенола и формальдегида у детей с генотоксическими нарушениями // ЗНиСО. 2015. N12(273). C. 52-56.
- 5. Franz A.W., Kronemayer H., Pfeiffer D., Pilz R.D., Reuss G., Distcldorf W., Gamer A.O., Hilt A. Formaldcgyde // Ullmannn's Encyclopedia of Industrial Chemistry. Wiley, 2016.

¹ ГОСТ Р ИСО 5725-1-2002 "Точность (правильность и прецизионность) методов и результатов измерений. Часть 1. Основные положения и определения", введенный в действие ПОСТАНОВЛЕНИЕМ Госстандарта Российской Федерации от 23.04.2002 N 161-ст (далее - ГОСТ Р ИСО 5725-1-2002).

² СанПиН 1.2.3685-21 "Гигиенические нормативы и требования к обеспечению безопасности и (или) безвредности для человека факторов среды обитания", утвержденные постановлением Главного государственного санитарного врача Российской Федерации от 28.01.2021 N 2 (зарегистрировано Минюстом России 29.01.2021, регистрационный N 62296), с изменениями, внесенными постановлением Главного государственного санитарного врача Российской Федерации от 30.12.2022 N 24 (зарегистрировано Минюстом России 09.03.2023, регистрационный N 72558).

- ³ ГОСТ 12.1.005-88 "Общие санитарно-гигиенические требования к воздуху рабочей зоны", введенный постановлением Госстандарта СССР от 29.09.1988 N 3388.
- 4 Примечание: 0,04 мг/м 3 предел обнаружения формальдегида в воздухе рабочей зоны.
- ⁵ ГОСТ Р ИСО 5725-1-2002; ГОСТ Р ИСО 5725-2-2002; ГОСТ Р ИСО 5725-3-2002 "Точность (правильность и прецизионность) методов и результатов измерений. Часть 3. Промежуточные показатели прецизионности стандартного метода измерений", введенный в действие постановлением Госстандарта России от 23.04.2002 N 161-ст; ГОСТ Р ИСО 5725-4-2002 "Точность (правильность и прецизионность) методов и результатов измерений. Часть 4. Основные методы определения правильности стандартного метода измерений", введенный в действие постановлением Госстандарта России от 23.04.2002 N 161-ст; ГОСТ Р ИСО 5725-5-2002 "Точность (правильность и прецизионность) методов и результатов измерений. Часть 5. Альтернативные методы определения прецизионности стандартного метода измерений", введенный в действие постановлением Госстандарта России от 23.04.2002 N 161-ст; ГОСТ Р ИСО 5725-6-2002 "Точность (правильность и прецизионность) методов и результатов измерений. Часть 6. Использование значений точности на практике", введенный в действие постановлением Госстановлением Госстандарта России от 23.04.2002 N 161-ст (далее ГОСТ Р ИСО 5725-6-2002).

⁶ Раздел 5 ГОСТ Р ИСО 5725-6-2002.

Руководитель Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека, Главный государственный санитарный врач Российской Федерации

А.Ю. Попова