Методические указания по методам контроля МУК 4.1.4104-24 "Газохроматографическое определение массовой концентрации винилацетата в воде" (утв. Федеральной службой по надзору в сфере защиты прав потребителей и благополучия человека от 25 декабря 2024 г.)

Методические указания по методам контроля МУК 4.1.4104-24 "Газохроматографическое определение массовой концентрации винилацетата в воде" (утв. Федеральной службой по надзору в сфере защиты прав потребителей и благополучия человека от 25 декабря 2024 г.)

Дата введения 25 марта 2025 г. Взамен MP 2915-82

І. Общие положения и область применения

- 1.1. Настоящие методические указания по методам контроля (далее МУК) описывают порядок применения метода газовой хроматографии для определения массовой концентрации винилацетата в воде питьевой систем централизованного, в том числе горячего, и нецентрализованного водоснабжения, в воде подземных и поверхностных водных объектов хозяйственно-питьевого и культурно-бытового водопользования, в воде плавательных бассейнов и аквапарков в диапазоне 0,1 0,4 мг/дм³.
 - 1.2. МУК носят рекомендательный характер.

II. Физико-химические свойства

- 2.1. Винилацетат этенилацетат; уксусной кислоты виниловый эфир 1 . Брутто формула С $_4$ Н $_6$ О $_2$. Молекулярная масса 86,09 г/моль. CAS N 10805-4.
 - 2.2. Физические и химические свойства.

Бесцветная, летучая, легковоспламеняющаяся жидкость с эфирным запахом. Давление пара (при температуре плюс 20 °C) 11,7 кПа (88 мм.рт.ст.). Растворимость в воде при температуре плюс 20 °C: 2 г/100 см³ (слабая). Температура плавления минус 93,2 °C, температура кипения плюс 72,7 °C. Хорошо растворим в ароматических углеводородах (бензоле, толуоле, ксилоле) и во многих других органических растворителях (спирте, эфире, гексане).

2.3. Краткая токсикологическая характеристика.

Согласно классификации опасности веществ, загрязняющих воду, винилацетат относится ко 2 классу (высоко опасный). Лимитирующий показатель вредности - санитарно-токсикологический. Винилацетат может поступать в воду в результате водоподготовки и миграции из материалов и реагентов. Острая пероральная токсичность (LD_{50}) для крыс > 3500 мг/кг, острая ингаляционная токсичность (LC_{50}) для крыс > 15810 мг/м 3 .

2.4. Область применения.

Основное применение винилацетата - промышленное. Мономер винилацетата используется в качестве промежуточного продукта для гомополимеризации и получения поливинилацетата, поливинилового спирта, а также сополимеризации с другими веществами, главным образом с винилхлоридом. Полимеры и сополимеры винилацетата имеют хорошие адгезионные, оптические, электроизоляционные и волокнообразующие свойства.

III. Погрешность измерений

3.1. При соблюдении условий проведения анализа и методики, изложенной в настоящих МУК, погрешность² (и её составляющие) результатов измерений при доверительной вероятности Р = 0,95 не превышает значений, приведенных в табл. 3.1 для соответствующих диапазонов концентраций.

Метрологические характеристики

Анализир	Диапазон	Показатель	Показател	Показатель	Предел	Предел
уемый	определяе	точности	Ь	воспроизво	повторяемос	воспроизводим
объект	мых	(граница	повторяе	димости	ти	ости (значение
	концентр	относитель	мости	(среднеквад	(значение	допустимого
	аций,	ной	(среднекв	ратичное	допустимого	расхождения
	мг/дм ³	погрешност	адратичн	отклонение	расхождения	между двумя
		и, P = 0.95),	oe	воспроизво	между двумя	результатами
		±δ, %	отклонен	димости), о	результатами	измерений,
			ие	R, %	параллельны	полученными в
			повторяе		X	разных
			мости), о		определений)	лабораториях),
			r, %		, r, %	R, %
Вода	0,1 - 0,4	25	4	5,6	11	16

IV. Метод измерений

- 4.1. Измерения концентраций винилацетата выполняют методом газовой хроматографии с пламенно-ионизационным детектором.
- 4.2. Измерение винилацетата основано на его извлечении из водных растворов гексаном и определении с использованием кварцевой капиллярной колонки, идентификации винилацетата по времени удерживания и количественном определении методом абсолютной градуировки.
 - 4.3. Нижний предел измерения в анализируемом объеме пробы 0.1 мг/дм^3 .

V. Средства измерений, реактивы, вспомогательное оборудование, устройства и материалы

5.1. При выполнении измерений и подготовке проб применяют средства измерений, реактивы, вспомогательное оборудование, устройства и материалы, приведенные в табл. 5.1 - 5.3.

Таблица 5.1

Средства измерений

Наименование средств измерения	Обозначение и наименование документов, технические
	характеристики
Весы лабораторные аналитические	Предел допустимой погрешности ±0,001 г, ГОСТ Р 53228-2008
Газовый хроматограф с пламенно-	Внесено в Реестр "Утверждённые типы средств
ионизационным детектором (далее -	измерений" Федерального информационного фонда по
ГХ-ПИД)	обеспечению единства измерений. Предел
	детектирования для винилацетата не более 0,1 мг/дм ³ ,
	относительное среднее квадратическое отклонение
	выходного сигнала детектора не более 2 %,
	программное обеспечение для обработки полученных
	результатов измерений
Прибор/ приборы для измерения	Внесено в Реестр "Утверждённые типы средств
атмосферного давления, температуры	измерений" Федерального информационного фонда по

и влажности воздуха	обеспечению единства измерений. Диапазон измерения	
	600 - 800 мм.рт.ст., пределы допускаемых	
	погрешностей ±0,5 мм.рт.ст., цена деления шкалы 1,0	
	мм.рт.ст.	
Колбы мерные	2-го класса точности 2-10-2, 2-50-2, ГОСТ 1770-74	
Микрошприц	Вместимость 10 мм 3	
Пипетки градуированные	2-го класса точности, вместимость 0,5; 1,0; 10 см ³ ,	
	ГОСТ 29227-91	
Дозаторы переменного объема	10-100 мм ³ , 100-1000 мм ³ , ГОСТ 28311-2021	
Цилиндры мерные	2-го класса точности 2-100-2, ГОСТ 1770-74	
Секундомер механический	2-го класса точности, цена деления шкалы: секундной -	
	0,2 с; минутной - 1 мин, допустимая погрешность при	
	температуре плюс (20±5) °C в пределах ±1,0 с	
Примечание: допускается использование средств измерения с аналогичными или		
улучшенными характеристиками.		

Таблица 5.2

Реактивы

Наименование реактива	Обозначение и наименование документов, технические	
	характеристики	
Винилацетат	Аналитический стандарт, чистое вещество для	
	хроматографии	
Гексан	Для высокоэффективной жидкостной хроматографии,	
	чистота не менее 95,0 %	
Азот газообразный	Объемная доля основного вещества не менее 99,996 %,	
	ГОСТ 9293-74	
Вода для лабораторного анализа	Бидистиллированная или деионизованная, 2-й степени	
	чистоты, ГОСТ Р 52501-2005	
Натрий хлористый	Химически чистый, ГОСТ 4233-77	
Натрий сернокислый	Химически чистый, ГОСТ 4166-78	
Примечание: допускается использование реактивов с более высокой квалификацией, не		
требующей дополнительной очистки растворителей.		

Таблица 5.3

Вспомогательное оборудование, устройства, материалы

Наименование вспомогательного	Обозначение и наименование документов, технические
оборудования, устройств, материалов	характеристики
Хроматографическая колонка	Капиллярная, длиной 30 м, внутренним диаметром
	0,32 мм, со слоем неподвижной жидкой фазы
	полиэтиленгликоль толщиной 1,0 мкм
Воронки химические	Конусные диаметром 40 - 45 мм, ГОСТ 25336-82
Делительная воронка на 250 см ³	Воронка ВД-3-250 ХС ГОСТ 25336-82
Груша резиновая	-
Экстрактор	Диапазон частоты вращения вала перемешивающего
	устройства 200 - 3500 об/мин, диапазон показаний
	секундомера 0 - 100 мин
Ультразвуковая ванна	Объем ванны 2,8 дм ³ , таймер 1 - 25 мин, термостат 20 -
	65 °C

Бидистиллятор/система получения	Поглощение сферическим активированным углем,	
сверхчистой воды	обратный осмос, ионный обмен, УФ-облучение	
Примечание: допускается использование вспомогательного оборудования, устройств и		
материалов с аналогичными или лучшими техническими характеристиками.		

VI. Требования безопасности

- 6.1. При выполнении измерений необходимо соблюдать требования техники безопасности при работе с химическими реактивами в соответствии с ГОСТ 12.1.007-76, требования по электробезопасности при работе с электроустановками в соответствии с ГОСТ 12.1.019-2017, а также требования, изложенные в эксплуатационной документации на используемые средства измерений и вспомогательное оборудование.
- 6.2. Помещение лаборатории должно соответствовать требованиям пожарной безопасности в соответствии с ГОСТ 12.1.004-91 и иметь средства пожаротушения в соответствии с ГОСТ 12.4.009-83, приточно-вытяжную вентиляцию в соответствии с ГОСТ 12.4.021-75 и водопровод.
- 6.3. Измерения в соответствии с настоящими МУК может выполнять специалист, имеющий опыт работы на газовом хроматографе, освоивший данную методику.

VII. Условия измерений

- 7.1. При выполнении измерений соблюдают следующие условия:
- процессы приготовления растворов и подготовки проб к анализу проводят при температуре воздуха плюс 15 30 °C и относительной влажности не более 80 %;
- выполнение измерений на газовом хроматографе проводят в условиях, рекомендованных технической документацией к прибору.

VIII. Подготовка к выполнению измерений

- 8.1. При подготовке к выполнению измерений проводят следующие работы: подготовка средств измерений и вспомогательных устройств, приготовление растворов, установление градуировочной характеристики.
- 8.2. Подготовку хроматографа, капиллярной колонки проводят в соответствии с эксплуатационными документами.
- 8.2.1. Колонку предварительно кондиционируют, не соединяя выходные концы колонок с детектором, нагревая в термостате хроматографа до температуры плюс 240 °C и выдерживая при этой температуре в течение 4 ч. Условия кондиционирования (температура и время) могут быть заданы программным обеспечением на лабораторное оборудование (ГХ-ПИД), что не требует дополнительного контроля отдельными средствами измерений. Вход в детектор при этом заглушают графитовыми прокладками. После охлаждения термостата колонок хроматографа выходные концы колонки подсоединяют к ГХ-ПИД. Контролируют шум и дрейф нулевой линии на соответствие эксплуатационным документам прибора. Уровень флуктуационных шумов нулевого сигнала пламенно-ионизационного детектора должен быть не более $2\cdot 10^{-14}$ А. Дрейф нулевого сигнала пламенно-ионизационного детектора должен быть не более $4\cdot 10^{-13}$ А/ч. Если данные показатели не соответствуют установленным требованиям, необходимо выявить и устранить причины.
 - 8.3. Приготовление растворов.
 - 8.3.1. Приготовление основного раствора винилацетата в н-гексане.
- В мерной колбе вместимостью 50 см³ взвешивают с точностью до третьего десятичного знака 0,5 г винилацетата, доводят до метки н-гексаном.

Величина навески с учетом содержания винилацетата в аналитическом стандарте ($m_{\rm CO}$), г, рассчитывается по формуле (1):

$$m_{CO} = \frac{100 * m_T}{A}$$
, (1)

где: $m_{\rm T}$ - теоретически рассчитанная масса навески стандартного образца при 100 % содержании основного вещества, г;

А - аттестованное значение стандартного образца, % (содержание основного вещества).

Аттестованное значение массовой концентрации исходного раствора винилацетата (B), г/см³, рассчитывают по формуле (2):

$$B = \frac{m_{CO}}{V_{p-pa}}, (2)$$

где: $m_{\rm CO}$ - величина навески с учетом содержания винилацетата в аналитическом стандарте, г;

 $V_{
m p ext{-}pa}$ - объем исходного аттестованного раствора, см 3 .

Основной раствор стабилен при хранении в колбе с притертой пробкой при температуре плюс 2 - 8 °C в течение 1 месяца.

- 8.3.2. Рабочий раствор винилацетата в н-гексане с массовой концентрацией 10 мг/дм^3 готовят из основного раствора методом разбавления. Для этого в мерную колбу на 100 см^3 дозатором (или пипеткой) вносят $0,1 \text{ см}^3$ исходного раствора винилацетата, доводят объем в колбе до метки н-гексаном и перемешивают. Раствор стабилен при хранении в колбе с притертой пробкой при температуре плюс 2 8 °C в течение 2 недель.
- 8.3.3. Приготовление градуировочных растворов винилацетата для установления градуировочной характеристики. Для получения серии градуировочных растворов в мерные колбы вместимостью 10 см³ вносят 0,1; 0,2; 0,3; 0,4 см³ рабочего раствора винилацетата, доводят объемы в колбах до метки н-гексаном и перемешивают. Получают серию градуировочных растворов с массовыми концентрациями винилацетата: 0,1 мг/дм³; 0,2 мг/дм³; 0,3 мг/дм³; 0,4 мг/дм³. Градуировочные растворы готовят в день проведения градуировки.
- 8.4. Градуировочную характеристику, выражающую зависимость площади хроматографического пика от массовой концентрации винилацетата в растворе (мг/дм ³), устанавливают по пяти сериям из четырех градуировочных растворов винилацетата. Градуировочная зависимость считается приемлемой, если рассчитанное значение квадрата коэффициента корреляции для градуировочной кривой составляет 0,99.
- 8.5. В инжектор хроматографа вводят по 3 мм³ каждого градуировочного раствора и анализируют в условиях хроматографирования, указанных в п. 10.3. Устанавливают площади пиков винилацетата, на основании которых строят градуировочную зависимость.

Контроль стабильности градуировочной характеристики проводят в начале и по окончании каждой серии анализов.

При контроле стабильности градуировочной характеристики проводят измерения не менее двух образцов растворов для градуировки, содержание винилацетата в которых должно охватывать весь диапазон концентраций от 0,1 до 0,4 мг/дм³.

Градуировочная характеристика считается стабильной, если для каждого используемого для контроля градуировочного раствора величина расхождения (A), рассчитанная по формуле (3), не превышает норматива контроля погрешности (B) - соотношение (4):

$$A = \frac{|X - C|}{C} \times 100$$

$$A \leq B, (4)$$

- X концентрация винилацетата в пробе при контрольном измерении, мкг/дм 3 ;
- C известная концентрация градуировочного раствора, взятая для контроля стабильности градуировочной характеристики, мкг/дм 3 ;
- В норматив контроля стабильности градуировочной характеристики, % (равен 10 % при P=0,95).

Если величина расхождения (A) превышает 10 %, делают вывод о невозможности применения градуировочной характеристики для дальнейших измерений. В этом случае выясняют причины нестабильности, устраняют их и проводят повторную градуировку хроматографа, используя свежеприготовленные растворы.

ІХ. Отбор и хранение проб

9.1. Отбор проб осуществляют в соответствии с документами по стандартизации 3 . Воду отбирают в стеклянные бутыли емкостью 0,5 - 1 дм 3 . Отобранные пробы хранят и транспортируют при температуре не более плюс $10\,^{\circ}$ С. В лаборатории пробы хранят в холодильнике при температуре плюс 2 - $6\,^{\circ}$ С не более 3 дней.

Х. Выполнение определения

- 10.1. Анализируемую пробу воды объемом 100 см³ экстрагируют трижды по 30 см³ нгексаном с помощью экстрактора (1500 об/мин) и ультразвуковой ванны (при комнатной температуре плюс 20 25 °C) в течение 3 мин на каждом из устройств. Допускается применение ручного метода экстрагирования с помощью делительной воронки. При образовании эмульсии в системе вода гексан добавляют 2 г сухого натрия хлористого. Объединенный экстракт пропускают через слой безводного натрия сернокислого. Экстракт переносят в цилиндр и замеряют его объем, который учитывается при измерении массовой концентрации винилацетата (мг/дм³), и вводят аликвоту пробы в испаритель.
- 10.2. Для оценки фона (чистоты аналитической системы) перед началом работы инжектируют в прибор $1\,$ мм $^3\,$ чистого растворителя (гексан) и записывают хроматограмму, на которой не должно присутствовать посторонних пиков.
- 10.3. В испаритель газового хроматографа вводят 3 мм³ экстракта анализируемой пробы воды, подготовленной в соответствии с п. 10.1, далее выполняют хроматографическое разделение в условиях, приведенных в п. 10.4. Записывают хроматограммы и идентифицируют винилацетат по совпадению времени удерживания. Осуществляют не менее 2 параллельных измерений. Устанавливают площадь пика винилацетата.
 - 10.4. Условия хроматографирования 4.

Измерения выполняют при следующих режимных параметрах:

- ГХ-ПИД;
- кварцевая капиллярная колонка длиной 30 м, внутренним диаметром 0,32 мм, со слоем неподвижной жидкой фазы полиэтиленгликоль, толщиной 1,0 мкм;
 - температура испарителя: плюс 125 °C;
 - температура детектора: плюс 150 °C;
 - температура колонки: плюс 50 °C;
 - объемный расход водорода: 60 см³/мин;
 - объемный расход воздуха: 190 см³/мин;
 - сброс газа-носителя: 10,2 см³/мин;
 - ориентировочное время выхода винилацетата: 5 мин.

XI. Обработка результатов анализа

11.1. За результат анализа принимают концентрацию винилацетата в хроматографируемом растворе, найденную по градуировочному графику в соответствии с величинами площадей хроматографических пиков.

Идентификация и расчет концентрации вещества в пробах могут быть проведены с помощью компьютерной программы обработки хроматографических данных, включенных в аналитическую систему. В случае отсутствия такой системы концентрацию винилацетата в пробе анализируемой воды (X), мг/дм³, рассчитывают по формуле (5):

$$X = \frac{y * V_1}{V_2}$$
, (5)

где: у - найденное количество винилацетата по хроматограмме, мг/дм³;

 V_1 - объем экстракта, см 3 ;

 V_2 - объем анализируемой пробы воды, см 3 .

11.2. За результат анализа принимают среднее арифметическое результатов двух параллельных определений, расхождение между которыми не превышает предела повторяемости, условие (6):

$$\frac{2 \cdot \left| X_1 - X_2 \right| \cdot 100}{\left(X_1 + X_2 \right)} \le r$$

где: X_1 , X_2 - результаты параллельных определений, мг/дм 3 ;

r - значение предела повторяемости (табл. 3.1).

При невыполнении условия (6) выясняют причины превышения предела повторяемости, устраняют их и вновь выполняют анализ.

XII. Оформление результатов

12.1. Результат количественного анализа представляют в виде (7):

$$(\overline{X} \pm \Delta)_{M\Gamma/JM^3, (7)}$$

где: \overline{X} - среднее арифметическое результатов определений, мг/дм 3 ;

 Δ - граница абсолютной погрешности, мг/дм 3 , рассчитанная по формуле (8):

$$\Delta = \frac{\delta \cdot X}{100} \quad , (8)$$

где: δ - граница относительной погрешности методики (показатель точности по диапазону концентраций, табл. 3.1), %.

Результат измерений должен иметь тот же десятичный разряд, что и погрешность. Если содержание винилацетата менее нижней границы диапазона определяемых концентраций, результат анализа представляют в виде: "содержание винилацетата в воде - менее 0,1 мг/дм ³" ⁵.

XIII. Контроль качества результатов измерений

13.1. Контроль погрешности и воспроизводимости измерений осуществляется в соответствии с документами по стандартизации 6 . Периодичность и формы контроля определяются руководством по качеству.

Библиографические ссылки

- 1. Федеральный закон от 30.03.1999 N 52-Ф3 "О санитарно-эпидемиологическом благополучии населения".
- 2. ГОСТ Р ИСО 5725-1-2002 "Точность (правильность и прецизионность) методов и результатов измерений. Часть 1. Основные положения и определения".
- 3. ГОСТ Р ИСО 5725-2-2002 "Точность (правильность и прецизионность) методов и результатов измерений. Часть 2. Основной метод определения повторяемости и воспроизводимости стандартного метода измерений".
- 4. ГОСТ Р ИСО 5725-3-2002 "Точность (правильность и прецизионность) методов и результатов измерений. Часть 3. Промежуточные показатели прецизионности стандартного метода измерений".
- 5. ГОСТ Р ИСО 5725-4-2002 "Точность (правильность и прецизионность) методов и результатов измерений. Часть 4. Основные методы определения правильности стандартного метода измерений".
- 6. ГОСТ Р ИСО 5725-5-2002 "Точность (правильность и прецизионность) методов и результатов измерений. Часть 5. Альтернативные методы определения прецизионности стандартного метода измерений".
- 7. ГОСТ Р ИСО 5725-6-2002 "Точность (правильность и прецизионность) методов и результатов измерений. Часть 6. Использование значений точности на практике".
- 8. ГОСТ Р 53228-2008 "Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания".
- 9. ГОСТ 29227-91 "Посуда лабораторная стеклянная. Пипетки градуированные. Часть 1. Общие требования".
- 10. ГОСТ 1770-74 "Посуда мерная лабораторная стеклянная. Цилиндры, мензурки, колбы, пробирки. Общие технические условия".
- 11. ГОСТ 28311-2021 "Дозаторы медицинские лабораторные. Общие технические требования и методы испытаний".
 - 12. ГОСТ 9293-74 "Азот газообразный и жидкий. Технические условия".
 - 13. ГОСТ Р 52501-2005 "Вода для лабораторного анализа. Технические условия".
- 14. ГОСТ 25336-82 "Посуда и оборудование лабораторные стеклянные. Типы, основные параметры и размеры".
- 15. ГОСТ 12.1.007-76 "Вредные вещества. Классификация и общие требования безопасности".
- 16. ГОСТ 12.1.019-2017 "Электробезопасность. Общие требования и номенклатура видов защиты".
 - 17. ГОСТ 12.1.004-91 "Пожарная безопасность. Общие требования".
- 18. ГОСТ 12.4.009-83 "Пожарная техника для защиты объектов. Основные виды. Размещение и обслуживание".
 - 19. ГОСТ 12.4.021-75 "Системы вентиляционные. Общие требования".
 - 20. ГОСТ Р 59024-2020 "Вода. Общие требования к отбору проб".

¹ В соответствии с классификацией Международного союза теоретической и прикладной химии (ИЮПАК) (англ. International Union of Pure and Applied Chemistry, IUPAC).

² ГОСТ Р ИСО 5725-1-2002 "Точность (правильность и прецизионность) методов и результатов измерений. Часть 1. Основные положения и определения", введенный в действие постановлением Госстандарта России от 23.04.2002 N 161-ст (далее - ГОСТ Р ИСО 5725-1-2002); ГОСТ Р ИСО 5725-2-2002 "Точность (правильность и прецизионность) методов и результатов измерений. Часть 2. Основной метод определения повторяемости и воспроизводимости стандартного метода измерений", введенный в действие постановлением Госстандарта России от 23.04.2002 N 161-ст (далее - ГОСТ Р ИСО 5725-2-2002).

³ ГОСТ Р 59024-2020 "Вода. Общие требования к отбору проб", введенный приказом Госстандарта от 10.09.2020 N 640-ст.

⁴ **Примечание**: допускается проведение анализа в других условиях хроматографирования, обеспечивающих

разделение определяемого вещества.

- ⁵ **Примечание:** $0,1 \text{ мг/дм}^3$ предел обнаружения винилацетата в воде.
- ⁶ ГОСТ Р ИСО 5725-1-2002; ГОСТ Р ИСО 5725-2-2002; ГОСТ Р ИСО 5725-3-2002 "Точность (правильность и прецизионность и прецизионности стандартного метода измерений", введенный в действие Постановлением Госстандарта России от 23.04.2002 N 161-ст; ГОСТ Р ИСО 5725-4-2002 "Точность (правильность и прецизионность) методов и результатов измерений. Часть 4. Основные методы определения правильности стандартного метода измерений", введенный в действие постановлением Госстандарта России от 23.04.2002 N 161-ст; ГОСТ Р ИСО 5725-5-2002 "Точность (правильность и прецизионность) методов и результатов измерений. Часть 5. Альтернативные методы определения прецизионности стандартного метода измерений", введенный в действие постановлением Госстандарта России от 23.04.2002 N 161-ст; ГОСТ Р ИСО 5725-6-2002 "Точность (правильность и прецизионность) методов и результатов измерений. Часть 6. Использование значений точности на практике", введенный в действие постановлением Госстановлением Госстандарта России от 23.04.2002 N 161-ст.

Руководитель Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека, Главный государственный санитарный врач Российской Федерации

А.Ю. Попова