Методические указания МУ 3.5.2.4105-24 "Определение уровня чувствительности к инсектоакарицидам членистоногих, имеющих медицинское значение" (утв. Федеральной службой по надзору в сфере защиты прав потребителей и благополучия человека 25 декабря 2024 г.)

Методические указания МУ 3.5.2.4105-24

"Определение уровня чувствительности к инсектоакарицидам членистоногих, имеющих медицинское значение"

(утв. Федеральной службой по надзору в сфере защиты прав потребителей и благополучия человека 25 декабря 2024 г.)

Дата введения 25 апреля 2025 г. Взамен МУ 3.5.2.2358-08

І. Область применения

- 1.1. Настоящие методические указания (далее МУ) описывают методы определения чувствительности к инсектоакарицидам членистоногих, имеющих медицинское значение.
- 1.2. Настоящие МУ предназначены для специалистов органов и организаций, осуществляющих федеральный государственный санитарно-эпидемиологический контроль (надзор), специалистов научно-исследовательских, медицинских и образовательных организаций, а также для специалистов организаций дезинфекционного профиля, разрабатывающих стратегию и тактику применения инсектоакарицидов и применяющих их в дезинфекционной деятельности в соответствии с санитарно-эпидемиологическими требованиями ¹.

II. Общие положения

2.1. Резистентность (устойчивость) членистоногих является эволюционным процессом генетической адаптации. Устойчивость членистоногих к инсектоакарицидам подразделяется на природную и приобретенную. Членистоногие на разных стадиях развития обладают различной природной устойчивостью к инсектоакарицидам, относящимся к разнообразным группам химических веществ. Формирование резистентных популяций членистоногих под воздействием инсектоакарицидов является одной из проблем их эффективного использования. В урбанизированных ценозах приобретенная устойчивость к инсектоакарицидам выявлена в популяциях многих видов членистоногих.

В настоящих МУ изложены методы определения уровня чувствительности к инсектицидам у синантропных членистоногих, имеющих медицинское (эпидемиологическое или санитарногигиеническое) значение: рыжего таракана Blattella germanica (L.), платяной Pediculus humanus humanus L. и головной P. humanus capitis (De Geer) вши, постельных клопов Cimex lectularius L. и С. hemipterus (F.), крысиной блохи Xenopsylla cheopis (Rothschild), комнатной мухи Musca domestica L., комаров (личинок и имаго) родов Culex, Aedes и Anopheles, иксодовых клещей рода Ixodes (I. persulcatus Schulze и I. ricinus L.).

- 2.2. Определение уровня чувствительности членистоногих к используемым и рекомендуемым действующим веществам (далее ДВ) инсектоакарицидов является необходимым элементом при планировании и осуществлении программ истребительных мероприятий. Резистентность представляет собой динамичное явление, развивающееся в различных пределах как в популяциях разных видов, так и в популяциях одного и того же вида при различном прессе применяемых инсектоакарицидов.
- 2.3. Оперативным методом, рекомендованным Комитетом экспертов Всемирной организации здравоохранения (далее ВОЗ) по инсектицидам, является использование диагностических (дискриминирующих) концентраций или доз [2]. В основу настоящих МУ положены стандартные методы определения чувствительности членистоногих к инсектоакарицидам, рекомендуемые ВОЗ ².
 - 2.4. Изучение уровня чувствительности к инсектоакарицидам членистоногих, собранных на

III. Сбор и культивирование членистоногих из природных популяций

- 3.1. Сбор, учет и подготовка к лабораторному исследованию кровососущих членистоногих в природных очагах инфекционных болезней проводится в соответствии с методическими документами³.
- 3.2. В зависимости от вида членистоногого и количества единовременно доступных особей из природной популяции, эксперименты по изучению уровня чувствительности к инсектоакарицидам проводятся или непосредственно на собранном материале, или закладывается культура для получения в лаборатории необходимого объема материала в следующих поколениях. Членистоногие, собранные на объектах, размещаются в помещении, отдельном от помещения для культивирования чувствительной культуры членистоногих этого же вида.
- 3.3. Сбор рыжих тараканов Blattella germanica, постельных клопов Cimex lectularius и C. hemipterus, комнатных мух Musca domestica и их культивирование в лабораторных условиях осуществляются в соответствии с методическими документами 4 .
- 3.4. Сбор личинок и имаго кровососущих комаров из родов Aedes, Culex, Anopheles проводят в природных или урбанизированных биотопах в соответствии с методическими документами ⁵.
- 3.5. Сборы вшей Pediculus humanus двух подвидов платяной P. humanus humanus и головной P. humanus capitis и эксперименты с ними проводятся в соответствии с методическими документами 6 .
- 3.6. Сбор или отлов блох проводятся в местах их обитания в соответствии с методическими документами ⁷. Выловленные блохи содержатся в емкостях с песком в термостате при температуре плюс 27°C и относительной влажности 70%. В качестве прокормителей блох используются лабораторные мыши.
- 3.7. Сбор иксодовых клещей рода Ixodes (I. persulcatus и I. ricinus) проводится в природных биотопах в соответствии с методическими документами ⁸. В опытах используются самки.
- 3.8. Идентификация видовой принадлежности членистоногих проводится специалистамиэнтомологами с помощью определителей, соответствующих систематической группе. При работе с природными и лабораторными членистоногими соблюдаются необходимые меры предосторожности ⁹.

IV. Оборудование и материалы, используемые при проведении экспериментов

- 4.1. Все эксперименты по определению чувствительности членистоногих к инсектоакарицидам проводятся в биологической лаборатории, оснащенной термостатами, холодильниками, аналитическими весами, вытяжными шкафами, лабораторными столами, иным необходимым оборудованием и мебелью. При работе с членистоногими из природных очагов инфекционных болезней обеспечивается биологическая безопасность в соответствии с санитарно-эпидемиологическими требованиями 10 .
- 4.2. Для проведения экспериментов необходимы: стаканы стеклянные или полимерные; бутылки полимерные объемом 2 л; пластиковые контейнеры размером (50х30х15) см, стеклянные пластины размером (10х20) см; экспозиметры диаметром 4 см; бутыли стеклянные прозрачные объемом 250 мл с завинчивающейся крышкой; чашки Петри диаметром 10 см и 4 см; часовые стекла или стеклянные чашки; пипетки; цилиндры; сосуды для отстаивания воды; пробирки стеклянные химические; пробирки стеклянные биологические объемом 120 мл; химические штативы для пробирок; микродозаторы (петли) или микропипетки; пипетки одноразовые разного объема (1 5 мл); эксгаустеры; стеклянные воронки; сачок диаметром 4 см; ловушка для сбора насекомых портативная; вазелин технический; мелкоячеистая марля для закрывания стаканов; крышки пластиковые с небольшими отверстиями, предотвращающие побег (вылет) насекомых; хлопчатобумажная ткань; резиновые кольца; глазной пинцет; мягкий пинцет; флаконы пенициллиновые с резиновыми крышками; химические пробирки с пробками; лейкопластырь; маркер водостойкий; ацетон; этиловый спирт; эфир медицинский; влагонепроницаемые перчатки; фильтровальная бумага (фильтры обеззоленные); ножницы; вата; пробит-логарифмическая бумага

для построения линий регрессии; графитовый карандаш; прозрачная линейка; шариковая или гелевая ручка; журнал учета данных опытов.

- 4.3. Оборудование и приборы, используемые при проведении экспериментов, должны быть поверены в установленном порядке и иметь действующее свидетельство о поверке ¹¹.
- 4.4. Для приготовления рабочих растворов инсектоакарицидов используются технические продукты с различным содержанием ДВ или средства в препаративных формах, зарегистрированные в установленном порядке ¹². Приготовление рабочих растворов осуществляется в соответствии с методическими документами ¹³.

V. Методы определения чувствительности членистоногих к инсектоакарицидам

5.1. Методы определения чувствительности к инсектицидам рыжих тараканов Blattella germanica.

В лабораторных условиях определение чувствительности и диагностической концентрации (далее - ДК) или диагностической дозы ДВ инсектицида проводится методом топикального нанесения инсектицида и методом контакта с обработанными тест-поверхностями. Опыты проводятся на однородном биоматериале - имаго самцов рыжего таракана лабораторной чувствительной культуры в возрасте 5 - 15 суток после имагинальной линьки.

5.1.1. При использовании топикального метода ацетоновые или спиртовые растворы ДВ инсектицида наносятся из микропипетки или с помощью микродозатора на мезостернум (среднегрудь) анестезированных тараканов по 1 мкл на каждое насекомое. В контрольном варианте на каждого таракана наносится 1 мкл растворителя, использованного при приготовлении растворов инсектицида. После нанесения инсектицида насекомые помещаются в чистые стаканы (стеклянные или полимерные) со смазанными вазелином краями.

Опыты проводятся не менее чем в трех повторностях для каждой концентрации инсектицида

при температуре воздуха плюс $(23^{\pm}2)$ °C. В каждой повторности используются не менее 10 особей, в контрольном варианте - не менее 20 особей. Учет гибели насекомых проводится через 24 ч и 48 ч. В категорию "пораженных" включаются мертвые и парализованные насекомые, к которым относят тараканов, неспособных к самостоятельному передвижению. Рассчитываются показатели CK_{50} , CK_{95} - концентрации, которые обеспечивают поражение 50% (95%) насекомых. Исходный уровень чувствительности самцов рыжего таракана лабораторной чувствительной культуры S-

5.1.2. Метод контакта с обработанной инсектицидами стеклянной поверхностью непригоден для установления уровня резистентности к ДВ инсектицидов, обладающих выраженным кишечным действием и низкой контактной активностью, например, к гидраметилнону, сульфторамидам, неоникотиноидам, пирролам.

НИИД к инсектицидам приводится в таблице 1 приложения к настоящим МУ.

Опыты проводятся в стеклянных биологических пробирках большого объема (не менее 120 мл), обработанных ацетоновыми растворами инсектицидов за 2 ч до подсадки насекомых. Площадь внутренней поверхности пробирки измеряется по формуле (1):

$$S = (3.14 \times h \times d) \text{ cm}^2$$
 (1)

На внутреннюю поверхность пробирок наносится ацетоновый раствор ДВ инсектицида из расчета 1 мл на 1 дм² внутренней поверхности пробирки, затем пробирки необходимо вращать, равномерно распределяя раствор по внутренней стенке и дну, до полного испарения растворителя. Работа проводится в вытяжном шкафу.

Насекомые помещаются в обработанные пробирки, верхний край которых закрывают бязью и резиновым кольцом. Все концентрации инсектицида испытываются не менее чем в трех повторностях, с не менее чем 10 насекомыми на каждую. Контролем служат насекомые (не менее 20 особей), помещенные в сосуды, обработанные растворителем. Учитывается время наступления нокдауна (для пиретроидов) или состояния паралича (для фосфорорганических соединений (далее - ФОС) и ДВ из других групп инсектицидов) для каждого насекомого в опыте. Рассчитываются

показатели KT_{50} и KT_{99}^{14} . Каждый опыт проводится не менее чем в трех повторностях. Исходный уровень чувствительности к инсектицидам самцов рыжих тараканов лабораторной чувствительной культуры приводится в таблице 2 приложения к настоящим MY.

5.1.3. Метод определения кишечного воздействия инсектицидов рекомендуется для определения уровня чувствительности имаго рыжих тараканов к ДВ, обладающим выраженным кишечным действием и не имеющим репеллентного действия в отношении этих насекомых. Метод непригоден для пиретроидов.

Насекомые за 24 ч до начала опыта отбираются из емкости для культивирования и отсаживаются в пластиковые контейнеры размером (50х30х15) см со смазанными вазелином краями. В контейнерах размещаются поилка с водой и укрытие. Через 24 ч после адаптации тараканов к новым условиям в контейнеры помещаются готовые пищевые приманки, содержащие ДВ. Опыт сопровождается двумя контрольными вариантами: в одном тараканам предлагаются комбикорм для грызунов и вода, во втором - только вода. Опыты проводятся с использованием приманок, не менее чем в трех повторностях для каждой приманки. В каждой повторности используются не менее 20 особей, в контрольном варианте - не менее 30 особей. Опыты проводятся при температуре воздуха плюс (23[±]2)°С. Учеты гибели насекомых проводятся через каждые 24 ч в течение 15 суток. В категорию "пораженных" включают мертвых и парализованных насекомых. Парализованными считают тараканов, неспособных к самостоятельному передвижению. Рассчитываются показатели ЛТ 50 и ЛТ 95 (сутки) - время, за которое обеспечивается поражение 50% (95%) насекомых. Исходный уровень чувствительности самцов рыжих тараканов лабораторной чувствительной культуры S-НИИД при кишечном воздействии приводится в таблице 3 приложения к настоящим МУ.

- 5.2. Методы определения уровня чувствительности к инсектицидам вшей.
- 5.2.1. Доля устойчивых к инсектицидам особей вшей в выборке определяется модифицированным методом ВОЗ ¹⁵. Для опытов используются стандартные фильтры диаметром 11 см или вырезается круг диаметром 11 см из фильтровальной бумаги. На фильтр пипеткой равномерно наносится ацетоновый раствор инсектицида в норме расхода 1 мл/дм² (0,95 мл на стандартный фильтр диаметром 11 см) в ДК, затем фильтр высушивается в подвешенном состоянии до полного испарения растворителя. После этого фильтр вкладывается внутрь крышки от чашки Петри (диаметр 10 см) таким образом, чтобы он плотно прилегал к дну, затем на него высыпаются вши. Для предотвращения расползания насекомых они накрываются оставшейся половиной чашки Петри, которая маркируется с указанием времени начала эксперимента. Через 6 ч чашку переворачивают и слегка постукивают ею по столу. Вши, неспособные держаться на поверхности бумаги, считаются парализованными (в состоянии нокдауна). Доля оставшихся на бумаге активных вшей от общего числа особей, помещенных в чашку Петри изначально, отражает долю вшей, устойчивых к инсектициду, которым была обработана фильтровальная бумага. В опытах используются сытые личинки старшего возраста и половозрелые самцы и самки вшей.
- 5.2.2. Опыты проводятся не менее чем в трех повторностях (не менее чем 10 насекомых в каждой), в контрольном варианте не менее 20 особей. Насекомые после контакта с инсектицидом, а также из контрольного варианта помещаются в пенициллиновые флаконы с вложенными кусочками ткани размером (1x1) см, которые затем ставятся в эксикаторы, содержащие насыщенный раствор поваренной соли (относительная влажность воздуха около 75%). Эксикаторы помещаются в термостат (температура плюс $(28\pm2)^{\circ}$ С) и содержатся в темноте. Учет погибших в опыте платяных вшей проводится через 20 ч, головных вшей через 6 ч. ДК инсектицидов, рекомендованных BO3, приводятся в таблице 4 приложения к настоящим MY [24].
- 5.2.3. В основе молекулярных механизмов резистентности Кdr-типа (нокдаун-типа) к пиретроидам у насекомых лежат нуклеотидные мутации в гене Vssc1, кодирующем белок потенциал-зависимых натриевых каналов. У вшей выявлены три точечные мутации M815I (ATG/ATT), T917I (ACA/ATA) и L920F (CTT/TTT), приводящие к трем заменам аминокислотных остатков во втором домене α -субъединицы потенциал-зависимого натриевого канала. Доказано, что наиболее значима замена треонина на изолейцин в 917-й позиции. Наличие указанных мутаций, обусловливающих резистентность к пиретроидам у вшей, выявляется методом полимеразной цепной реакции (далее ПЦР) с гибридизационно-флуоресцентной детекцией в режиме "реального времени" (далее RT-ПЦР).

Собранных с людей вшей фиксируют в 96% этиловом спирте или замораживают при температуре минус 70°С. В одной географической точке проводятся исследования не менее 30 - 50 особей каждого подвида вшей. Подготовка проб и проведение RT-ПЦР осуществляются в соответствии с методическими документами ¹⁶.

- 5.3. Методы определения уровня чувствительности к инсектицидам постельных клопов Cimex lectularius и Cimex hemipterus.
- 5.3.1. При использовании метода топикального нанесения инсектицида в сухие чистые химические пробирки с полосками бумаги размером (1x5) см, сложенными в виде "гармошки", помещаются по 10 имаго клопов без разделения по полу. Клопы должны быть одинаковыми по размеру и степени насыщения. Готовятся серии ацетоновых растворов ДВ инсектицидов. Концентрации подбираются так, чтобы можно было рассчитать величины CK_{50} и CK_{95} , %. По величине CK_{95} рассчитывается ДК, равная удвоенной концентрации CK_{95} , %. Клопы переносятся в стеклянные чашки Петри и обрабатываются растворами инсектицидов, начиная с наименьшей концентрации. Растворы наносятся микродозатором или микрошприцем каплями объемом 0,5 мкл на вентральную часть тела насекомого. После нанесения раствора каждое насекомое мягким пинцетом переносится обратно в этикетированные пробирки. Повторность экспериментов трехкратная, по три пробирки оставляются в качестве контрольных (без обработки) и обработанных только растворителем. Учет смертности проводится через 24 ч после обработки. Величины CK_{50} и CK_{95} , % и ДК приводятся в таблице 5 приложения к настоящим MY.
- 5.3.2. Для исследования методом ПЦР с целью выявления резистентности к пиретроидам используются постельные клопы, собранные с разных объектов. Насекомые фиксируются в 96% этиловом спирте или замораживаются при температуре минус 28°C.

Высокая резистентность постельных клопов Kdr-типа к пиретроидам связана с точечными мутациями в гене Vssc1, кодирующем белок потенциал-зависимых натриевых каналов. У постельных клопов выявлены две основные точечные мутации - V419L и L925I, приводящие к двум заменам аминокислотных остатков в первом и втором доменах α-субъединицы потенциал-зависимого натриевого канала.

Клопы (по 5 особей) помещаются в пробирки (тип пробирок зависит от способа гомогенизации материала) с предварительно добавленным реагентом, которые подписываются водостойким маркером, и растираются тефлоновым пестиком. Лизат инкубируется при комнатной температуре в течение 10 мин до полной диссоциации нуклеотидных комплексов. Затем лизат центрифугируется при 12000g в течение 10 мин для удаления нерастворенных фрагментов. Супернатант переливается в новые пробирки.

После добавления хлороформа (0,2 мл на каждый 1 мл реагента ExtractRNA, добавленного на этапе гомогенизации) пробирки слегка встряхиваются вручную в течение 15 с, и смесь инкубируется при комнатной температуре в течение 10 мин при периодическом встряхивании пробирок. Затем суспензия центрифугируется при 12000g при температуре плюс 4°С в течение 15 мин на центрифуге. При центрифугировании происходит разделение смеси на три фазы: нижнюю органическую фенол-хлороформную фазу желтоватого оттенка, интерфазу белого цвета и верхнюю бесцветную водную фазу. РНК находится в водной фазе. При удержании пробирки под углом 45° аккуратно отбирается водная фаза, избегая касания интерфазы или органической фазы. Водная фаза перемещается в новую пробирку.

На этапе выделения РНК необходимо соблюдать соответствующие меры безопасности во избежание загрязнения проб РНКазами. В водную фазу добавляется 0,5 мл 100% изопропанола на каждый 1 мл реагента, использованного для гомогенизации. Смесь инкубируется при комнатной температуре в течение 10 мин. Образец центрифугируется при 12000g в течение 10 мин при комнатной температуре, затем тщательно отбирается супернатант, а осадок РНК остается на дне пробирки (осадок может быть невидимым). Аккуратно, по стенке пробирки, добавляется 2 мл 75% этанола на каждый 1 мл изопропанола, использованного ранее, и центрифугируется на максимальной скорости 14000g в течение 5 мин при комнатной температуре. Затем удаляется этанол, осадок высушивается на воздухе в пробирке с открытой крышкой в течение 5 - 7 мин. РНК растворяется в необходимом объеме свободной от РНКаз воды, перемешивается пипетированием и прогревается при температуре плюс 55 - 60°С в течение 3 мин для лучшего растворения осадка. Выделенная РНК может сразу же быть использована. Все дальнейшие работы с препаратом следует вести на льду. Перед длительным использованием препарат распределяется на аликвоты и

замораживается. Замороженная РНК хранится при температуре минус 20°С и ниже в течение одного года.

- 5.3.3. Синтез первой цепи кДНК выполняется на матрице мРНК с помощью фермента обратной транскриптазы (далее MMLV ревертазы) и гексануклеотидов. В стерильной пробирке готовится смесь следующих компонентов объемом 9 мкл: 1 4 мкл РНК матрицы; 1 мкл Random праймера; 4 7 мкл стерильной воды, свободной от РНКаз. Смесь инкубируется при температуре плюс 70°С в течение 3 мин и охлаждается на льду. Добавляется 11 мкл предварительно подготовленной смеси следующего состава: 2 мкл стерильной воды, свободной от РНКаз; 4 мкл 5х буфера для синтеза первой цепи; 2 мкл смеси дезоксинуклеозида трифосфата (далее dNTP); 2 мкл дитиотреитола (DTT); 1 мкл ММLV ревертазы. Реакционная смесь инкубируется в амплификаторе с греющейся крышкой или в сухом термостате в течение 60 мин при температуре плюс 40°С, для остановки реакции смесь прогревается при температуре плюс 70°С в течение 10 мин. Образец первой цепи кДНК может храниться до трех месяцев при температуре минус 20°С или в течение года при температуре минус 70°С.
- 5.3.4. ПЦР проводится на матрице кДНК на амплификаторе с помощью Таq-полимеразы с использованием dNTP и реакционного буфера. Все составляющие берутся из набора для амплификации ДНК. Условия амплификации приводятся в таблице 6 приложения к настоящим МУ.

Состав реакционной смеси: 1 мкл реакционного буфера, 0,8 мкл смесь dNTP, 1 мкл прямого праймера (конечная концентрация в смеси 0,2 мМ), 1 мкл обратного праймера (конечная концентрация в смеси 0,2 мМ), 0,1 мкл Таq-полимеразы, 1 мкл матрицы и вода. Общий объем реакционной смеси составляет 10 мкл.

Структуры и положение праймеров, а также размеры соответствующих ПЦР-фрагментов представлены в таблице 7 приложения к настоящим МУ. При конструировании праймеров для ПЦР-анализа используется программа GeneRunner 17 .

Для разделения фрагментов ДНК по размеру (длине) применяется агарозный электрофорез. С помощью анализатора гелей визуально оценивается интенсивность свечения полос в 1,2% агарозном геле. Окрашивание нуклеиновых кислот производится во время электрофореза при добавлении бромистого этидия в гель.

- 5.4. Определение уровня чувствительности к инсектицидам крысиной блохи Xenopsylla cheopis методом групповой подсадки на импрегнированную инсектицидом фильтровальную бумагу.
- 5.4.1. В колбах с притертыми пробками готовится серия ацетоновых растворов ДВ инсектицида с шагом разбавления, равным 2 10. Фильтровальная бумага размером (10х10) см размечается карандашом на 20 частей размером (5х1) см и маркируется. Размеченная бумага раскладывается на стеклянной поверхности, и на нее равномерно наносится 1 мл раствора инсектицида определенной концентрации. После полного испарения растворителя бумага используется в эксперименте или упаковывается в полиэтиленовый пакет. Использовать импрегнированную бумагу следует не позднее трех суток после изготовления при хранении в заклеенных пакетах.
- 5.4.2. Взрослые голодные блохи 1 3-недельного возраста из лабораторной культуры без разделения по полу подсаживаются на обработанную фильтровальную бумагу, время контакта составляет 1 ч. Учет гибели проводится через 24 ч. Лежащие блохи, неспособные самостоятельно перевернуться, относятся к погибшим. Опыт проводится в трех повторностях. Рассчитываются величины CK_{50} (CK_{95} , CK_{99}), %.
- 5.4.3. При проведении опытов с вертикально расположенной фильтровальной бумагой образцы фильтровальной бумаги, подготовленные в соответствии с п. 5.4.1, разрезаются на части размером (5х1) см. Блохи помещаются в пробирки по 20 особей, в которые затем опускаются кусочки импрегнированной бумаги. Через 1 ч бумага аккуратно извлекается, в пробирки с блохами насыпается тонкий слой чистого песка для убежища блох, пробирки помещаются на штативе в термостат при температуре плюс 27°С и относительной влажности 80%. Экспериментально
- установленные концентрации ${}^{CK_{50}}$, ${}^{CK_{95}}$, ${}^{CK_{99}}$ при контакте блох X. cheopis чувствительной лабораторной культуры S-НИИД с вертикально расположенной фильтровальной бумагой, импрегнированной ацетоновыми растворами ДВ инсектицидов, приводятся в таблице 8 приложения к настоящим МУ.
 - 5.4.4. При групповой подсадке блох на горизонтально расположенную фильтровальную

бумагу подготовленная в соответствии с п. 5.4.1 импрегнированная бумага не разрезается, а вкладывается в чашку Петри целиком. Блохи по 20 - 30 особей рассаживаются в стеклянные емкости достаточной высоты (10 - 15 см) с гладким ровным горлом (банки, стаканы), которые накрываются чашкой Петри с вложенной в нее обработанной бумагой и переворачиваются вверх дном (при этом следует придерживать чашку). Блохи оказываются на фильтре. После экспозиции емкости переворачиваются обратно, блохи при постукивании стряхиваются в емкость, из которой через воронку ссыпаются в чистые пробирки, находящиеся в штативе. В пробирки насыпается тонкий слой чистого песка для убежища блох, затем пробирки на штативе помещаются в термостат при условиях, аналогичных описанным в п. 5.4.3. Учеты смертности проводятся аналогично. При изучении пиретроидов учитывается время наступления нокдауна у 99% блох (КТ 99, мин), для остальных групп инсектицидов учитывается только гибель (%) через 24 ч. Экспериментально

 ${\rm CK}_{50},~{\rm CK}_{95},~{\rm CK}_{99}$ при контакте блох X. cheopis чувствительной лабораторной культуры S-НИИД с горизонтально расположенной фильтровальной бумагой, импрегнированной ацетоновыми растворами ДВ инсектицидов, приводятся в таблице 9 приложения к настоящим МУ. Для соединений группы пиретроидов проводятся аналогичные опыты с определением показателей нокдаун-эффекта КТ $_{99}$ (мин), приведенных в таблице 10 приложения к настоящим МУ.

- 5.4.5. Метод групповой подсадки на импрегнированную инсектицидом фильтровальную бумагу не используется для установления уровня чувствительности крысиной блохи X. cheopis к неоникотиноидам и пирролам (хлорфенапир), величина CK_{50} которых составляет более 1%. Для этой цели применяются другие энтомотоксикологические методы.
- 5.4.6. При необходимости изучения чувствительности к инсектицидам других видов блох сначала определяются исходные уровни чувствительности блох конкретного вида.
- 5.5. Методы определения чувствительности к инсектицидам комнатной мухи Musca domestica.

В опытах используются 3-6-дневные имаго комнатной мухи без разделения по полу. Опыты проводятся при температуре воздуха плюс $(24^{\pm}2)^{\circ}$ C.

- 5.5.1. При использовании метода топикального нанесения ацетоновый раствор ДВ инсектицида с помощью микродозатора или микропипетки наносится по 1 мкл на среднеспинку мух. В опыте используются предварительно анестезированные мухи. Опыт проводится в трех повторностях, в каждой повторности используются 20 особей. После нанесения растворов инсектицида мухи помещаются в стеклянные или полимерные стаканы, которые накрываются марлевыми салфетками, смоченными водой, или накрываются марлевыми салфетками с помещенной сверху увлажненной ватой. Салфетки закрепляются резиновыми кольцами. Учет смертности насекомых проводится через 24 ч, рассчитываются показатели CK_{50} (CK_{95}). Исходный уровень чувствительности к инсектицидам имаго комнатной мухи лабораторной чувствительной культуры S-НИИД приводится в таблице 11 приложения к настоящим MY.
- 5.5.2. Метод топикального нанесения следует использовать для установления чувствительности имаго комнатной мухи к инсектицидам, обладающим выраженным контактным действием. Метод неприменим для работы с соединениями, не обладающими контактным действием для данного вида насекомых (например, имидаклоприд, карбарил и другие вещества, величина СК 95 для которых превышает 1%).
- 5.5.3. При использовании метода определения кишечного воздействия инсектицидов за 16 ч до начала эксперимента у мух отнимается корм, в садках остается только вода. Сахарный песок раскладывается по 2 г на часовые стекла или стеклянные чашки Петри, затем смачивается 1 мл ацетонового раствора инсектицида и остается в вытяжном шкафу до полного испарения растворителя (не менее 12 ч). Следует учитывать, что при нанесении 1 мл 1% раствора (т.е. 10 мг ДВ инсектицида в 1 мл ацетона) на 2 г сахара концентрация инсектицида в приманке будет составлять 0,5% (5 мг/г сахара).
- 5.5.4. В качестве емкостей для содержания мух используются марлевые садки размером (20х20х20) см или прозрачные полимерные емкости (бутылки) объемом 2 л. В последнем случае у бутылок срезается дно, и срез закрывается марлевыми салфетками, закрепляемыми резиновыми кольцами. Бутылка кладется горизонтально, ее горлышко закупоривается ватным тампоном, смоченным водой, в середину бутылки помещается сахарная приманка на подложке (например,

маленькие чашки Петри). В опыте используются предварительно анестезированные мухи в количестве 40 особей на бутылку или 100 особей на садок. В контрольном варианте сахарный песок смачивается 1 мл ацетона. Гибель насекомых учитывается через 24, 48 и 72 ч. Уровень чувствительности имаго комнатной мухи лабораторной чувствительной культуры S-НИИД при скармливании отравленной приманки (кишечное действие) приводится в таблице 12 приложения к настоящим МУ.

- 5.6. Методы определения чувствительности к инсектицидам у кровососущих комаров родов Aedes, Culex и Anopheles.
- 5.6.1. При установлении уровня чувствительности к ларвицидам опыты проводятся на личинках комаров III IV возраста методом ВОЗ [2]. В емкости объемом 200 мл наливается по 99 мл водопроводной воды, отстоянной (дехлорированной) в течение 24 ч. В каждую емкость помещаются по 20 личинок комаров III или начала IV возраста. Через 2 ч погибшие или ослабленные личинки удаляются и заменяются на жизнеспособных. В каждую емкость вносится 1 мл раствора инсектицида для создания ДК в воде. Контролем служат личинки, помещенные в дехлорированную воду, в которую добавляется 1 мл растворителя. Опыты проводятся при температуре плюс 22 25°С. Погибшие личинки комаров учитываются через 24 ч. В категорию погибших включаются личинки, длительное время не всплывающие на поверхность воды или не ныряющие при колебании воды.
- 5.6.2. В таблице 13 приложения к настоящим МУ приводятся диагностические концентрации инсектицидов, рекомендованные ВОЗ, для некоторых видов комаров.

Сравнительные данные по инсектицидной активности ряда ФОС в отношении личинок желтолихорадочного комара Aedes albopictus приводятся в таблице 14 приложения к настоящим МУ.

Величины ДК, CK_{50} и CK_{95} микробиологических средств, произведенных и зарегистрированных в Российской Федерации в установленном порядке 18 , в отношении личинок комаров podoв Aedes, Culex и Anopheles из лабораторных чувствительных культур приводятся в таблице 15 приложения к настоящим МУ.

- 5.6.2. Метод контакта имаго комаров с импрегнированной инсектицидом фильтровальной бумагой для определения уровня их чувствительности к инсектицидам был разработан ВОЗ [28]. Наборы для проведения опытов состоят из 20 пластмассовых цилиндров длиной 125 мм и диаметром 44 мм. Восемь из них используют для контакта насекомых с инсектицидом, два - для контрольного варианта без инсектицида и десять - для содержания комаров. Каждый цилиндр с одного конца затягивается ячеистой сеткой из нейлона. В набор входят также 10 рамок с выдвижной заслонкой, каждая с выступающей винтовой нарезкой с обеих сторон и впускным отверстием на заслонке диаметром 20 мм. Внутренняя поверхность цилиндров для содержания комаров выстилается чистой бумагой (12 х 15) см. Комары контактируют с бумагой, импрегнированной растворами инсектицидов. Импрегнированную бумагу можно приготовить самостоятельно. Для этого листы фильтровальной бумаги (площадью 100 см^2) разрезаются на куски размером (12×15) см, и на каждый кусок наносится раствор инсектицида из расчета 100 мл/м². После обработки бумага развешивается и просушивается в течение 1 ч. В каждый цилиндр для контакта с инсектицидом вводится пропитанная раствором инсектицида в ДК бумага, свернутая в трубочку так, чтобы она прилегала к стенкам, и закрепляется в таком положении зажимами. Комары осторожно выдуваются из цилиндра для содержания и перемещаются в цилиндр для контакта с инсектицидом. Для соединения цилиндров используется рамка с задвижкой. Цилиндры с комарами остаются в вертикальном положении, закрытым сеткой концом кверху. По истечении экспозиции комары в обратном порядке переводятся в цилиндр для содержания, затем подсчитывается количество особей, впавших в состояние нокдауна, через 24 ч - количество погибших комаров. В таблице 16 приложения к настоящим МУ приводятся ДК инсектицидов, рекомендованные ВОЗ, и время контакта комаров с обработанной бумагой [15].
- 5.6.3. Для контакта имаго комаров со стеклянной поверхностью, обработанной инсектицидом, используются прозрачные стеклянные бутыли объемом 250 мл. В бутыли добавляется 1 мл ацетонового или спиртового раствора инсектицида в заданной концентрации; бутыли закрываются крышкой и несколько раз переворачиваются для попадания раствора инсектицида на крышку и дно бутыли. Затем бутыли необходимо вращать в горизонтальной плоскости для равномерного распределения раствора по стенкам. После испарения основной части

растворителя крышка отвинчивается, и нужно продолжать аккуратно вращать бутыль до полного испарения растворителя. Концентрации инсектицидов и диагностическое время контакта для комаров видов рода Aedes и Anopheles приводятся в таблице 17 приложения к настоящим МУ. ДК и диагностическое время контакта для комаров Aedes и Culex приведены в таблице 18 приложения к настоящим МУ.

Интерпретация полученных результатов: смертность 98 - 100% особей в рекомендуемое диагностическое время указывает на чувствительность к инсектициду; смертность 80 - 97% - на возможную резистентность, которую необходимо подтвердить; смертность <80% - на резистентность.

- 5.6.4. В опытах используются самки комаров, собранные в полевых условиях (смешанного возраста и физиологического статуса) или взрослые особи известного возраста, выращенные из собранных личинок. При проведении экспериментов на самках комаров, собранных в естественной среде обитания, обязательно отмечается их физиологическое состояние (не насытившиеся, с кровью, самки с созревающими яйцами) с занесением данных в таблицу. Самки комаров содержатся в садках, затянутых мелкоячеистой тканью, и питаются только 10% раствором сахара за сутки до постановки эксперимента. Опыты проводятся в четырех повторностях (не менее 25 комаров в каждой). Комары отбираются из садка эксгаустером любого типа и аккуратно выдуваются в обработанную бутыль. При невозможности разового сбора необходимого количества комаров опыты проводятся несколько раз на меньшем количестве комаров, а результаты потом суммируются. Все опыты сопровождаются контрольным вариантом (10 25 особей).
- 5.7. Для установления чувствительности к инсектоакарицидам клещей рода Ixodes (I. persulcatus и I. ricinus) самки клещей отлавливаются на флаг в природном биотопе, не подвергавшемся акарицидным обработкам, в период максимальной численности клещей (для рода Ixodes 3 декада мая), не более чем за сутки до проведения опыта. Клещи хранятся во влажных бинтах при температуре плюс $(10^{\pm}2)^{\circ}$ С. По 0.3 мкл спиртовых растворов инсектоакарицидов наносятся на дорзальную поверхность клещей. Учеты осуществляются через 24 ч после обработки. Проводятся по три опыта в трех повторностях на клещах, отловленных в разные дни, используя по 20 особей в каждой. Опыты сопровождаются контрольным вариантом (нанесение только растворителя). ДК инсектоакарицидов для самок клещей I. persulcatus приводятся в таблице 19 приложения к настоящим My.

VI. Приготовление растворов инсектицидов и расчет среднесмертельных концентраций и доз

- 6.1. Рабочие растворы для проведения экспериментов готовятся в соответствии с методическими документами ¹⁹. При топикальном нанесении инсектицидов на насекомых и клещей используется не менее пяти концентраций ацетоновых или спиртовых растворов ДВ, полученных при последовательном разбавлении (с шагом разбавления 2 или иным, в зависимости от необходимости).
- 6.2. Тест-поверхности обрабатываются исходя из норм расхода 1 мл/дм² впитывающей поверхности (например, фанера, ткань, фильтровальная бумага) и 0,5 1 мл/дм² невпитывающей поверхности (стекло). Контрольные тест-поверхности обрабатываются тем же растворителем, что и для растворения инсектицида, и в той же норме расхода в зависимости от тест-поверхности.
 - 6.3. Каждый опыт проводится в 3 5 повторностях в сопровождении контрольного варианта.
- 6.4. В категорию "пораженных" включаются мертвые и парализованные особи, не способные к самостоятельному передвижению.
- 6.5. Показатели СК $_{50}$ или СД $_{50}$ (СК $_{95}$ или СД $_{95}$ и другие величины) для каждого инсектоакарицида определяются графически методом пробит-анализа при построении линии регрессии "концентрация смертность" ("доза-смертность") на пробит-логарифмической бумаге 20 .
- 6.6. Для пересчета величины СК $_{50}$ (СК $_{95,99}$), % в величину СД $_{50}$ (СД $_{95,99}$), мкг/г определяется средняя масса одного членистоногого в мг. Для этого до опыта взвешиваются не менее 50 предварительно анестезированных особей. Вычисление проводится по приведенным ниже формулам (2 6):

$$CД_{50}, \text{мкг/г} = \frac{CK_{50}, \% \times \text{объем петли, мкл} \times 10000}{\text{масса насекомого, мг}}$$
(2)
$$CД_{50}, \text{мкг/особь} = \text{CK}_{50}, \% \times 10 \times \text{объем петли, мкл} \times 1000$$

$$CД_{50}, \text{мкг/г} = \frac{CД_{50}, \% \times 10 \times \text{объем петли, мкл} \times 1000}{\text{масса насекомого, мг}}$$
(4)
$$CK_{50}, \% = \frac{CД_{50}, \text{мкг/особь}}{10 \times \text{объем петли, мкл}}$$
(5)

$$CK_{50}$$
, %= $\frac{CД_{50}, \frac{MK\Gamma}{\Gamma} \times \text{масса насекомого,м}\Gamma}{10000 \times \text{объем петли,мкл}}$ (6)

VII. Использование диагностической концентрации

- 7.1. По данным экспериментов, проведенных в лабораторных условиях топикальным методом, рассчитываются ДК. Концентрация, равная удвоенной концентрации, вызывающей смертность 95% (99%) членистоногих, считается диагностической. При наличии в лаборатории стандартной чувствительной культуры насекомых, величины CK_{50} или CK_{95} определяются параллельно на насекомых, собранных на объекте, и чувствительных насекомых. В том случае, если лабораторная культура отсутствует, для сравнения используются базовые показатели чувствительности, приведенные в приложении к настоящим MY.
- 7.2. Оценка чувствительности членистоногих при использовании инсектицидов в ДК может быть выполнена на ограниченном числе отловленных в природных условиях особях членистоногих (не менее 30 однородных особей). Популяция считается чувствительной, если в эксперименте погибли 100% особей. При отсутствии гибели 100% особей от воздействия инсектицида в ДК популяция характеризуется долей устойчивых особей (доля оставшихся в живых особей в процентах) и проводятся дальнейшие углубленные исследования.
- 7.3. Для более детальной оценки уровня чувствительности членистоногих, собранных на объектах, определение этого уровня проводится не менее двух раз в сезон, и результаты анализируются в целом по сезону.

VIII. Рекомендуемые критерии оценки уровня чувствительности к инсектоакарицидам членистоногих, собранных на объектах

8.1. Для количественной оценки уровня чувствительности членистоногих при использовании показателя резистентности (далее - ПР) необходимо большое количество однородного биоматериала (не менее 100 однородных особей). Оценка проводится методом топикального нанесения инсектицидов при последующем сравнении величин CK_{50} CK_{95} , CK_{99} для чувствительной культуры и для конкретной природной популяции. ПР определяется по формуле (7):

$$\Pi P = \frac{CK_{50}}{CK_{30}}$$
 чувствительной культуры,% (7)

В зависимости от величины ПР популяция считается:

чувствительной - $\Pi P = 1 - 2$;

толерантной - $\Pi P = 3 - 10$;

среднерезистентной - $\Pi P = 11 - 30$;

высокорезистентной - $\Pi P = 31 - 100$;

экстремально высокорезистентной - ΠP более 100^{21} .

- 8.2. Критерий наличия резистентности членистоногих при использовании метода контакта с обработанной инсектицидом стеклянной поверхностью: увеличение показателя КТ ₉₉ (время проявления состояния нокдауна у 99% особей) в 1,5 3,0 и более раз по сравнению с чувствительной культурой.
- 8.3. Критерий наличия резистентности рыжих тараканов и комнатных мух при скармливании отравленных приманок: замедление времени проявления симптомов отравления в 1,5 3,0 и более раз по сравнению с чувствительной культурой.

IX. Статистическая обработка полученных результатов

- 9.1. Гибель членистоногих в каждой повторности и в контрольном варианте вычисляется в процентах по отношению к общему количеству насекомых или клещей в эксперименте. В случае гибели в контроле 5 20% особей результаты опытов пересчитываются с введением поправки по формуле Аббота ²².
- 9.2. Если гибель членистоногих в контрольном варианте превышает 20%, то опыт не учитывается и проводится заново.
- 9.3. Показатели CK_{50} , CK_{95} , $ЛT_{50}$ или $ЛT_{95}$, KT_{50} и KT_{99} рассчитываются с помощью программ статистической обработки данных или графическим методом с применением пробитлогарифмической бумаги.

X. Меры предосторожности при работе с членистоногими из природных популяций или собранными на объектах

10.1. Насекомые и клещи природных популяций могут быть переносчиками возбудителей трансмиссивных болезней, в связи с чем сбор и последующую лабораторную работу целесообразно осуществлять в соответствии с методическими документами ²³.

_

¹ Пункты 98 - 107 СанПиН 3.3686-21 "Санитарно-эпидемиологические требования по профилактике инфекционных болезней", утвержденных постановлением Главного государственного санитарного врача Российской Федерации от 28.01.2021 N 4 (зарегистрировано Минюстом России 15.02.2021, регистрационный N 62500), с изменениями, внесенными постановлениями Главного государственного санитарного врача Российской Федерации от 11.02.2022 N 5 (зарегистрировано Минюстом России 01.03.2022, регистрационный N 67587); от 25.05.2022 N 16 (зарегистрировано Минюстом России 21.06.2022, регистрационный N 68934) (далее - СанПиН 3.3686-21).

² Пункт 4.16 Р 4.2.3676-20 "Методы лабораторных исследований и испытаний дезинфекционных средств для оценки их эффективности и безопасности", утвержденного руководителем Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека, Главным государственным санитарным врачом Российской Федерации 18.12.2020 (далее - Р 4.2.3676-20).

³ Пункт 4.13 Р 3.5.2.2487-09 "Руководство по медицинской дезинсекции", утвержденного руководителем Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека, Главным государственным санитарным врачом Российской Федерации 26.02.2009 (далее - Р 3.5.2.2487-09); МР 3.1.0322-23 "Сбор, учет и подготовка к лабораторному исследованию кровососущих членистоногих в природных очагах инфекционных болезней", утвержденные руководителем Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека, Главным государственным санитарным врачом Российской Федерации 13.04.2023 (далее - МР

3.1.0322-23).

- ⁴ Подпункт **4.16.2** Р **4.2.3676-20**.
- ⁵ МУ 3.2.974-00 "Малярийные комары и борьба с ними на территории Российской Федерации", утвержденные Главным государственным санитарным врачом, Первым заместителем Министра здравоохранения Российской Федерации 16.05.2000; МУ 3.2.2568-09 "Контроль численности кровососущих комаров рода Culex, места выплода которых находятся в населенных пунктах", утвержденные руководителем Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека, Главным государственным санитарным врачом Российской Федерации 15.12.2009; МР 3.5.2.0110-16 "Организация и проведение мероприятий по энтомологическому мониторингу и регуляции численности кровососущих комаров Aedes aegypti и Aedes alboрістия", утвержденные руководителем Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека, Главным государственным санитарным врачом Российской Федерации 09.03.2016; подпункты 5.10.2, 5.10.3, 5.10.5, 5.10.6 МР 3.1.0322-23.
- ⁶ Подпункты 4.5.1-4.5.2 Р 4.2.3676-20.
- ⁷ Подпункты 5.6.1-5.6.4, 5.7.1-5.7.5, 5.11.3 MP 3.1.0322-23.
- ⁸ Подпункты 5.8.1-5.8.9 мР 3.1.0322-23; подпункт 4.16.2 Р 4.2.3676-20.
- ⁹ Подпункт 4.1.1.3 Р 4.2.3676-20.
- ¹⁰ Глава IV СанПиН 3.3686-21.
- ¹¹ Пункт 4.1.2 Р 4.2.3676-20.
- ¹² Единые санитарно-эпидемиологические и гигиенические требования к продукции (товарам), подлежащей санитарно-эпидемиологическому надзору (контролю), утвержденные решением Комиссии Таможенного союза от 28.05.2010 N 299, с изменениями, внесенными решениями Комиссии Таможенного союза от 17.08.2010 N 341, от 18.11.2010 N 456, от 02.03.2011 N 571, от 07.04.2011 N 622, от 18.10.2011 N 829, от 09.12.2011 N 859, от 09.12.2011 N 889, решениями Коллегии Евразийской экономической комиссии от 19.04.2012 N 34, от 13.06.2012 N 89, от 16.08.2012 N 125, от 06.11.2012 N 208, от 15.01.2013 N 6, от 10.11.2015 N 149, от 08.12.2015 N 162, от 16.01.2018 N 1, от 23.01.2018 N 12, решением Совета Евразийской экономической комиссии от 16.02.2018 N 5, решениями Коллегии Евразийской экономической комиссии от 10.05.2018 N 76, от 21.05.2019 N 78, от 08.09.2020 N 107, от 08.12.2020 N 162, от 03.08.2021 N 99, от 29.11.2021 N 161, от 08.02.2022 N 22, от 22.02.2022 N 28, от 14.11.2023 N 157 (далее Решение Комиссии Таможенного союза от 28.05.2010 N 299).
- ¹³ Пункт 4.1.4 Р 4.2.3676-20.
- ¹⁴ Подпункт **4.2.6** Р **4.2.3676-20**.
- ¹⁵ Подпункт 4.5.2 Р 4.2.3676-20.
- 16 Пункты 1 и 2 приложения 8 Р 4.2.3676-20.
- ¹⁷ Компьютерная программа анализа нуклеотидных и аминокислотных последовательностей GeneRunner www.generunner.net (в свободном доступе). Примечание: при конструировании праймеров для ПЦР-анализа можно использовать программное обеспечение с аналогичными или лучшими характеристиками.
- ¹⁸ Решение Комиссии Таможенного союза от 28.05.2010 N 299.
- ¹⁹ Подпункт **4.1.4** Р **4.2.3676-20**.
- 20 Подпункт 4.1.5.4 Р 4.2.3676-20.
- ²¹ Подпункт **4.16.4** Р **4.2.3676-20**.
- ²² Подпункт **4.1.5.2** Р **4.2.3676-20**.
- ²³ Приложение 3 MP 3.1.0322-23.

Приложение к МУ 3.5.2.4105-24

Рекомендуемые показатели для установления уровня чувствительности членистоногих к инсектоакарицидам и условия проведения экспериментов

Таблица 1

Исходный уровень чувствительности самцов рыжего таракана лабораторной чувствительной культуры S-НИИД и ДК при топикальном нанесении ДВ инсектицидов (учет через 24 ч)

	CTT 0/	CTT 0/	TTT 7-14 O /
I /IR	CK 50. %	('K 05 %	/
ДЪ	CIV 50, 70	L N 95, %	дк, /0

X	Слорорганические	соединения	
ДДТ	2,00	6,60	13,20
Метоксихлор	4,66	8,00	16,00
Φι	осфорорганически	е соединения	
ДДВФ	0,018	0,054	0,108
Диазинон	0,020	0,033	0,066
Малатион	0,080	0,500	1,000
Фенитротион	0,017	0,030	0,060
Хлорофос	1,400	2,600	5,200
Хлорпирифос	0,020	0,040	0,080
Фентион	0,032	0,045	0,090
Про	изводные карбами	новой кислоты	
Метомил	0,032	0,100	0,200
Пропоксур	0,029	0,062	0,124
Бендиокарб	0,018	0,045	0,090
Карбарил	0,220	0,650	1,300
	гроиды, не содержа		,
_			0.000
Бифентрин	0,0015	0,004	0,008
d-Фенотрин	0,020	0,200	0,400
Имипротрин	0,032	0,064	0,128
Перметрин	0,012	0,042	0,084
Праллетрин	0,012	0,030	0,060 0,700
Тетраметрин d-Тетраметрин	0,230 0,090	0,350	0,400
	•		0,400
Пир	етроиды, содержаг	цие CN-группу	
Альфациперметрин	0,00030	0,0012	0,0024
Циперметрин	0,00120	0,0070	0,0140
Дельтаметрин	0,00085	0,0022	0,0044
Цифенотрин	0,00540	0,0150	0,0300
Флуметрин	0,00580	0,0150	0,0300
Фенвалерат	0,00360	0,0060	0,0120
	Амидиногидра		2.00
Гидраметилнон	0,30 Фенилпиразо	1,50	3,00
Фидропил	<u>Фенилпиразо</u> 0,00013	0,0002	0,0004
Фипронил Пирипрол	0,00015	0,0002	0,0004
Пирипрол	Неоникотино Неоникотино		0,000
Имидаклоприд	0,0110	0,0450	0,0900
Тиаметоксам	0,0023	0,0080	0,0160
Ацетамиприд	0,0250	0,0500	0,1000
Клотианидин	0,0023	0,0080	0,0160
	Авермектин		,
Аверсектин С	0,0007	0,0020	0,004
Абамектин	0,0010	0,0046	0,009
Гемисукцинат авермектина B_1	0,0035	0,0094	0,020
Ивермектин	0,0026	0,0190	0,040
	Пирролы*	**	
Хлорфенапир	0,01	0,037	0,074
	Оксадиазині	Ы***	

Индоксакарб	0,0022	0,0050	0,010
Примечание: * ДК=2×СК 95; **	учет через 48 часов, *	** vчет через 72 часа.	

Таблица 2

Исходный уровень чувствительности самцов рыжего таракана лабораторной чувствительной культуры S-НИИД к инсектицидам при контакте с обработанной в дозе 20 мкг/см ² стеклянной поверхностью

ДВ	KT 50, мин	KT 99, мин	Диагностическ
			ое время, мин
			$(KT_{99} \times 1,5)$
Циперметрин	4,02±0,97	6,81±2,28	10,2
Хлорпирифос	31,08±3,30	38,60±3,27	57,9
Фипронил	150,65±4,04	190,68±5,61	286,0

Таблица 3

Исходный уровень чувствительности самцов рыжего таракана лабораторной чувствительной культуры S-НИИД к инсектицидам при кишечном воздействии

ДВ	Концентрация ДВ,	Время поражения тараканов, сут	
	%	ЛТ 50	ЛТ ₉₅
Хлорпирифос	0,20	0,75	1,05
Пропоксур	2,00	2,80	9,66
Фипронил	0,05	0,53	1,40
Гидраметилнон	2,00	3,03	6,16
Имидаклоприд	2,15	0,8	2,50
Ацетамиприд	0,80	1,50	6,00
Динотефуран	2,00	0,50	1,00

Таблица 4

ДК инсектицидов для вшей, рекомендованные ВОЗ

ДВ	ДК, %
Малатион	2,020
d-Фенотрин	1,107
Перметрин	0,206

Таблица 5

Исходный уровень чувствительности имаго обыкновенного постельного клопа лабораторной чувствительной культуры S-НИИД и ДК при топикальном нанесении ДВ инсектицидов (учет через 24 ч)

ДВ CK 50, %		CK 95, %	ДК, %
	Фосфорорганические (соединения	
Диазинон	0,00026	0,0045	0,009

Малатион	0,00037	0,0030	0,006			
Хлорпирифос	0,00019	0,0067	0,014			
Хлорофос	0,00900	0,7000	1,400			
Фентион	0,000007	0,00002	0,00004			
	Производные карбаминовой кислоты					
Пропоксур	0,058	0,120	0,24			
Бендиокарб	0,016	0,116	0,23			
Тетраметрин	0,0230	0,320	0,640			
d-Тетраметрин	0,0190	0,200	0,400			
Имипротрин	0,0019	0,014	0,028			
Перметрин	0,0056	0,015	0,030			
Бифентрин	0,000003	0,00004	0,00008			
Циперметрин	0,000003	0,00004	0,00008			
Дельтаметрин	0,000004	0,00004	0,00008			
Альфациперметрин	0,00000003	0,0000006	0,0000012			
Лямбда-цигалотрин	0,0000072	0,0000240	0,000048			
Эсфенвалерат	0,0000012	0,0001000	0,000200			
Неоникотиноиды						
Имидаклоприд	0,0002	0,0007	0,0012			
Ацетамиприд	0,0003	0,0024	0,0048			
Тиаметоксам	0,0002	0,0006	0,0012			
Клотианидин	0,00001	0,0006	0,0012			

Таблица 6

Температурный профиль ПЦР-амплификации для выявления мутаций I925L и L419V в образцах ДНК, выделенных из особей обыкновенного постельного клопа

Этап	Количество циклов	Температура инкубации, °С	Время, мин/с
I	1	94	05:00
II	45	94	00:20
		60 для I925	00:20
		64 для L419	00:20
		72	00:30
III	1	72	05:00

Таблица 7

Используемые нуклеотидные последовательности праймеров для проведения ПЦР при исследовании образцов ДНК, выделенных из особей обыкновенного постельного клопа

Мутация	Структура праймеров	Размер ПЦР-фрагмента,
		н.п.
L419	Пр. 5'TCCTCCGGTGCTGGACAATGTAAA 3'	305
	Обр. 5'CTTCCTCTTCAGCAGCTTCTTC 3'	
I925	Пр. 5'TGCCATGAAGTTGATAGCAATG 3'	403
	Обр. 5'TCTCCACACAGGACCCTAAAC 3'	

Исходный уровень чувствительности имаго крысиных блох лабораторной чувствительной культуры S-НИИД и ДК при групповой подсадке на вертикально расположенную фильтровальную бумагу, импрегнированную ДВ инсектицидов (экспозиция 1 ч, учет через 24 ч)

ДВ	CK 50, %	CK 95, %	ДК, %		
Хл	орорганические соедин	ения			
ДДТ	0,016	0,030	0,060		
Фосфорорганические соединения					
Азаметифос	0,100	0,165	0,330		
Малатион	0,018	0,030	0,060		
Хлорофос	0,076	0,160	0,320		
Хлорпирифос	0,010	0,023	0,046		
Фентион	0,003	0,007	0,014		
Фенитротион	0,002	0,005	0,010		
Диазинон	0,003	0,008	0,016		
Произ	водные карбаминовой н	кислоты			
Метомил	0,0020	0,010	0,020		
Пропоксур	0,0043	0,011	0,022		
	Пиретроиды				
Пиретр	оиды, не содержащие С	N-группу			
Эсбиотрин	0,020	0,048	0,096		
Эмпентрин	0,006	0,016	0,032		
Фенотрин	0,030	0,056	0,112		
Тетраметрин	1,035	1,500	3,000		
Перметрин	0,005	0,040	0,080		
Имипротрин	0,480	2,300	4,600		
Пирет	гроиды, содержащие CN	-группу			
Дельтаметрин	0,00030	0,0021	0,0042		
Альфациперметрин	0,00064	0,0025	0,0050		
Циперметрин	0,00120	0,0087	0,0170		
Цифенотрин	0,00250	0,0100	0,0200		
	Фенилпиразолы				
Фипронил	0,014	0,030	0,060		

Таблица 9

Исходный уровень чувствительности имаго крысиных блох лабораторной чувствительной культуры S-НИИД и ДК при групповой подсадке на горизонтально расположенную фильтровальную бумагу, импрегнированную ДВ инсектицидов (экспозиция 1 ч, учет через 48 ч)

ДВ	СК ₅₀ , мкг ДВ/см ²	СК ₉₅ , мкг ДВ/см ²	СК ₉₉ , мкг ДВ/см ²	ДК (СК ₉₉ ×2), мкг ДВ/см ²
d-фенотрин	0,60	2,70	5,00	10,0
Перметрин	0,80	3,00	5,50	11,0

Циперметрин	0,50	2,50	5,00	10,0				
Альфациперметрин	0,17	0,45	0,70	1,4				
Дельтаметрин	0,05	0,25	0,50	1,0				
Лямбда-цигалотрин	0,06	0,30	0,50	1,0				
Цифенотрин	0,06	0,25	0,50	1,0				
Фентион	0,80	2,50	4,50	9,0				
Хлорпирифос	0,30	1,20	2,50	5,0				
Малатион	1,60	4,50	6,50	13,0				
Пропоксур	0,40	2,20	4,50	9,0				
Бендиокарб	0,30	1,50	2,50	5,0				
Карбарил	10,0	35,0	60,0	120,0				
Фипронил*	0,70	1,50	1,80	3,6				
Примечание: * - уче	Примечание: * - учет через 72 ч.							

Таблица 10

Показатели нокдаун-эффекта КТ 99 (мин) для имаго крысиной блохи лабораторной чувствительной культуры S-НИИД на фильтровальной бумаге, импрегнированной пиретроидами

ДВ	Плотность нанесения, мкг ДВ/см ²							
	100	10	1	0,1	0,01			
Перметрин	10,07±1,31	13,88±2,08	32,08±9,63	56,18±5,90	>60			
d-фенотрин	12,52±1,5	17,57±2,6	27,82±6,70	42,65±10,41	>60			
Тетраметрин	8,25±0,25	9,55±0,35	12,15±0,15	15,75±0,25	21,15±1,15			
Цифенотрин	9,85±0,4	12,60±1,2	20,65±0,85	36,05±0,55	40,85±1,45			
Лямбда-	-	12,71±0,26	14,87±0,54	16,60±0,12	23,55±0,87			
цигалотрин								
Дельтаметрин	-	14,75±2,65	26,25±6,25	36,25±7,05	51,20±1,00			
Циперметрин	13,08±3,2	19,57±3,69	23,38±3,31	33,18±10,51	>60			
α-циперметрин	_	8,90±1,45	18,95±2,38	32,33±4,03	55,50±6,69			

Таблица 11

Исходный уровень чувствительности имаго комнатной мухи чувствительной культуры S-НИИД и ДК при топикальном нанесении (учет через 24 ч)

ДВ	CK 50, %	CK 95, %	ДК, %					
Хлорорганические соединения								
ДДТ	0,320	0,890	1,78					
Фосфорорганические соединения								
Азаметифос	0,025	0,080	0,160					
ДДВФ	0,0008	0,0014	0,0028					
Диазинон	0,007	0,022	0,044					
Малатион	1,000	4,500	9,000					
Фенитротион	0,030	0,135	0,270					
Хлорофос	0,180	1,500	3,000					
Хлорпирифос	0,015	0,040	0,080					
Фентион	0,013	0,040	0,080					

Произ	вводные карбаминово	ой кислоты						
Метомил	0,015	0,040	0,080					
Пропоксур	0,055	0,140	0,280					
Бендиокарб	0,070	0,300	0,600					
Пиретроиды								
d-аллетрин	0,020	0,074	0,148					
Эсбиотрин	0,004	0,011	0,022					
Праллетрин	0,006	0,032	0,064					
Эмпентрин	0,0080	0,022	0,044					
Хлорэмпентрин	0,0016	0,005	0,010					
Метофлутрин	0,0020	0,010	0,020					
Трансфлутрин	0,0007	0,002	0,004					
Флуметрин	0,0003	0,004	0,008					
Тетраметрин	0,012	0,550	1,100					
d-Тетраметрин	0,007	0,070	0,140					
d-Фенотрин	0,007	0,035	0,070					
Перметрин	0,0012	0,0045	0,009					
Имипротрин	0,047	0,105	0,210					
Альфациперметрин	0,000098	0,0006	0,0012					
Циперметрин	0,0002	0,0012	0,0024					
Дельтаметрин	0,000074	0,00035	0,0007					
Цифенотрин	0,0019	0,0070	0,0140					
Цифлутрин	0,0000125	0,00024	0,00048					
Фенвалерат	0,0130	0,115	0,230					
Эсфенвалерат	0,0033	0,011	0,022					
<u> Эсфеньинериг</u>	Фенилпиразоль		0,022					
Фипронил	0,00012	0,00076	0,00152					
Пирипрол	0,00012	0,00040	0,00080					
	Амидиногидразонь	-	0,00000					
Гидраметилнон	0,018	0,045	0,090					
тиримстипоп	Неоникотиноидь		0,050					
Тиаметоксам	0,003	0,021	0,042					
Ацетамиприд	0,110	1,180	2,360					
Клотианидин	0,004	0,023	0,046					
тотишидип	· · · · · · · · · · · · · · · · · · ·	0,020	0,070					
	Авермектины							
Абамектин	0,0010	0,0036	0,0072					
Аверсектин С	0,00008	0,0017	0,0034					
Гемисукцинат авермектина <i>В</i> ₁	0,0002	0,0009	0,0018					
Ивермектин	0,00019	0,0010	0,0020					
	Спиносины		·					
Спиносад	0,005	0,025	0,05					
	Пирролы							
Хлорфенапир*	0,0040	0,020	0,04					
	Оксадиазины							
Индоксакарб	0,0041	0,0140	0,0280					
Примечание: * - учет через 48 ч;	** - учет через 72 ч , * [,]	** - учет через 96 ч.						

Исходный уровень чувствительности имаго комнатной мухи чувствительной культуры S-НИИД и ДК при скармливании отравленной приманки (учет через 72 ч)

ДВ	СК 50, мг/г сахара	СК 95, мг/г сахара	ДК, мг/г сахара					
Фосфорорганические соединения								
Хлорпирифос	0,0092	0,048	0,096					
Хлорофос	0,200	0,800	1,600					
Диазинон	0,035	0,085	0,170					
Фентион	0,018	0,080	0,160					
Фенитротион	0,040	0,220	0,440					
Азаметифос	0,028	0,078	0,156					
П	Іроизводные карбами	иновой кислоты						
Пропоксур	0,230	2,600	5,200					
Метомил	0,032	0,140	0,280					
	Амидиногидр	разоны						
Гидраметилнон*	0,100	0,350	0,700					
Фенилпиразолы								
Фипронил	0,00033	0,0015	0,0030					
	Неоникотин	оиды						
Имидаклоприд	0,051	0,540	1,08					
Тиаметоксам	0,041	0,380	0,76					
Клотианидин	0,049	0,54	1,08					
Ацетамиприд	0,034	0,240	0,48					
	Авермекті	ины						
Абамектин	0,00024	0,0070	0,014					
Авермектин С	0,00026	0,0043	0,0086					
Гемисукцинат авермектина <i>В</i> ₁	0,00028	0,00170	0,0034					
	Пиррол	ы						
Хлорфенапир	0,006	0,026	0,052					
	Оксадиази	ины						
Индоксакарб	0,0050	0,012	0,024					
Примечание: * - учет через 9	06 ч.							

Таблица 13

ДК (мг/л) для личинок комаров по данным ВОЗ

Вид комаров	ДВ						
	ДДТ	Малатион	Фенитроти	Хлорпири	Темефос		
			ОН		фос		
Aedes aegypti	0,012	0,125	0,020	0,025	0,002	0,012	
(L.)							
Ae. caspius	0,012	0,125	_	0,012	_	_	
(Pall.)							

Culex pipiens	0,004	0,050	0,025	0,0128	0,0020	0,002
L.						
Cx. tarsalis	0,025	_	-	-	_	-
Coq.						
Anopheles	-	-	-	-	0,025	0,025
hyrcanus Pall.						
An. sacharovi	5,00	-	-	0,050	0,025	0,625
Favre						

Таблица 14

Исходный уровень чувствительности к ФОС и ДК для личинок III - начала IV возраста комаров чувствительных лабораторных культур S-НИИД Aedes aegypti и Ae. albopictus (учет через 24 ч)

ДВ	Aedes aegypti			Aedes albopictus		
	CK 50 мг/л	CK 99 мг/л	ДК (СК ₉₉ ×	${ m CK}_{50}$ мг/л	CK 99 мг/л	ДК (СК ₉₉ ×
			2) мг/л			2) мг/л
Малатион	0,016	0,060	0,120	0,015	0,060	0,120
Темефос	0,003	0,010	0,020	0,003	0,008	0,016
Фентион	0,004	0,013	0,026	0,005	0,015	0,030
Фенитротио	0,004	0,015	0,030	0,004	0,016	0,032
Н						
Хлорпириф	0,00012	0,0006	0,0012	0,0002	0,001	0,002
ос						

Таблица 15

Исходный уровень чувствительности к микробиологическим средствам и ДК для личинок III - начала IV возраста чувствительных лабораторных культур комаров Aedes, Culex и Anopheles

Ларвицид	Вид комаров	СК 50, мг/л	СК 95, мг/л	ДК, мг/л				
Бактицид	Ae. aegypti	0,024	0,045	0,090				
	Cx. pipiens molestus Forsk.	0,010	0,027	0,054				
	Anopheles stephensi Liston	0,050	0,103**	0,200				
	An. atroparvus van Thiel	0,130	0,600**	1,800				
Ларвиоль	Ae aegypti	0,0035	0,0067	0,0134				
	Cx. pipiens molestus	0,0043	0,0084	0,0168				
	An. atroparvus	0,044	0,3000	0,6000				
Примечание	Примечание: ** - СК ₉₀ , мг/л.							

Таблица 16

ДК и продолжительность их воздействия для имаго некоторых видов комаров подсемейств Culicinae и Anophelinae

Вид комаров	Инсектицид (%/часы)						
	ДДТ	ДДТ Фенитро Фентион Малатио Пропокс Лямбда- Пермет					
		тион		Н	уp	цигалотр	ИН
						ин	ип
Aedes aegypti	4/0,5	-	0,25/1	0,8/1	0,1/1	0,03/1	0,25/1

Ae. albopictus	4/1	_	_	_	_	_	_
Ae. caspius	4/1	_	_	3,3/1	_	_	_
Cx. pipiens molestus	4/1	-	-	-	-	-	-
An. atroparvus	4/1	-	-	-	-	0,02/1	0,2/1
An. claviger (Meigen)	2/1	-	-	-	-	-	-
An. maculatus Theob.	4/1	1/1	-	-	-	-	-
An. maculipennis Meigen	4/2	1/2	2,5/1	3,2/1	-	-	-
An. messeae Falleroni	-	-	2,5/1	3,2/1	-	-	-
An. sacharovi	4/1	1/2	-	5/0,5	-	0,1/1	-
An. stephensi	4/2	1/2	-	3,2/1	-	0,01/1	0,1/1
An. superpictus Grassi	-	-	-	0,8/1	-	-	0,025/0,1

Таблица 17

Концентрации инсектицидов и диагностическое время контакта для комаров poдов Aedes и Anopheles из чувствительных лабораторных культур

ДВ	Концентрация инсект	Диагностическ	
	Anopheles	Aedes	ое время, мин
ДДТ	100	75	45
Пиримифос-метил	20	-	30
Малатион	50	50	
Фенитротион	50	50	
Бендиокарб	12,5	12,5	
Перметрин	21,5	15	
Циперметрин	12,5	10	
Цифлутрин	12,5	10	
Дельтаметрин	12,5	10	
Лямбда-цигалотрин	12,5	10	

Таблица 18

Концентрации инсектицидов и диагностическое время контакта для видов Aedes и Culex

ДВ	Концентрац	Диагностическое время (мин)				
	ия ДВ,	Aedes	Aedes	Culex	Cx.	Cx. tarsalis
	мкг/бутыль	aegypti	albopictus	pipiens	quinquefa-	
					sciatus	
Фентион	800	-	-	75	45	45
Малатион	400	15	30	45	45	45
Хлорпирифос	20	45	45	90	45	60
Пиретрум	15	15	30	45	45	30
Праллетрин	0,05	-	-	60	60	_
d-фенотрин	20	10	45	30	45	30

Перметрин	43	10	10	30	30	30
Этофенпрокс	12,5	15	30	15	30	60
Дельтаметрин	0,75	30	30	45	60	-

Таблица 19

Показатели чувствительности и ДК ДВ инсектоакарицидов для самок таежного клеща Ixodes persulcatus

ДВ	CK 50, %	CK 95, %	ДК, %
Фентион	0,000052	0,00086	0,0017
Циперметрин	0,0015	0,0083	0,0170

Нормативные и методические документы

- 1. Федеральный закон от 30.03.1999 N 52-ФЗ "О санитарно-эпидемиологическом благополучии населения".
- 2. Единые санитарно-эпидемиологические и гигиенические требования к продукции (товарам), подлежащей санитарно-эпидемиологическому надзору (контролю).
- 3. СанПиН 3.3686-21 "Санитарно-эпидемиологические требования по профилактике инфекционных болезней".
- 4. Руководство Р 4.2.3676-20 "Методы лабораторных исследований и испытаний дезинфекционных средств для оценки их эффективности и безопасности".
- 5. МУ 3.2.974-00 "Малярийные комары и борьба с ними на территории Российской Федерации".
- 6. МУ 3.2.2568-09 "Контроль численности кровососущих комаров рода Culex, места выплода которых находятся в населенных пунктах".
- 7. MP 3.5.2.0110-16 "Организация и проведение мероприятий по энтомологическому мониторингу и регуляции численности кровососущих комаров Aedes aegypti и Aedes albopictus".
- 8. МР 3.1.0322-23 "Сбор, учет и подготовка к лабораторному исследованию кровососущих членистоногих в природных очагах инфекционных болезней".

Библиографические ссылки

- 1. Высоцкая С.О. Краткий определитель блох, имеющих эпидемиологическое значение. Москва; Ленинград. Издательство Академии наук СССР. 1956. 100 с. (Определители по фауне СССР, издаваемые Зоологическим институтом Академии наук СССР; Выпуск 63).
- 2. Горностаев Г.Н. Определитель отрядов и семейств насекомых фауны России. Москва. ИК "Логос". 1999. 176 с.
- 3. Горностаева Р.М., Данилов А.В. Комары (сем. Culicidae) Москвы и Московской области: Руководство для практической службы здравоохранения Московского региона. Москва. КМК Scientific Press. 1999. 341 с.
- 4. Гуцевич А.В., Мончадский А.С., Штакельберг А.А. Комары (Семейство Culicidae). Ленинград. Наука, Ленинградское отделение. 1970. 384 с. (Фауна СССР; Новая серия, N 100. Насекомые двукрылые. Том III, выпуск 4).
- 5. Давлианидзе Т.А., Ерёмина О.Ю., Олифер В.В. Резистентность рыжих тараканов Blattella germanica к инсектицидам. Медицинская паразитология и паразитарные болезни. 2022. N 2. C. 52-63.
- 6. Давлианидзе Т.А., Ерёмина О.Ю., Олифер В.В. Резистентность к инсектицидам комнатной мухи Musca domestica в центре Европейской части России. Вестник защиты растений. 2022. Т. 105, N 3. C. 114-121.
- 7. Еремина О.Ю., Давлианидзе Т.А. Эволюция резистентности членистоногих и изменение ассортимента инсектицидов. Медицинская паразитология и паразитарные болезни. 2024. N 2. C. 45-

- 8. Еремина О.Ю., Олифер В.В. Кровососущие комары: некоторые аспекты резистентности к инсектицидам. Дезинфекционное дело. 2022. N 3 [121]. C. 19-25.
- 9. Еремина О.Ю., Олифер В.В. Результаты мониторинга резистентности к инсектицидам рыжих тараканов в России в 2012-2024 гг. Дезинфекционное дело. 2024. N 3 [129]. С. 33-40.
 - 10. Жужиков Д.П., Алешо Н.А. Тараканы рядом с нами. Определитель. Москва. 1997. 44 с.
- 11. Инструкция по лабораторному разведению блох для научных исследований. Саратов. 1984. 25 с.
- 12. Иофф И.Г., Скалон О.И. Определитель блох Восточной Сибири, Дальнего Востока и прилегающих районов. Москва. Медгиз. 1954. 275 с.
- 13. Иофф И.Г., Тифлов В.Е. Определитель афаниптера (Suctoria Aphaniptera) Юго-Востока СССР. Ставрополь. Ставропольское книжное издательство. 1954. 201 с.
- 14. Резистентность к инсектицидам и борьба с переносчиками. Семнадцатый доклад Комитета экспертов ВОЗ по инсектицидам. Перевод с английского. Серия технических докладов ВОЗ, N 443. Женева. Всемирная организация здравоохранения. 1972. 366 с.
- 15. Резистентность переносчиков болезней к пестицидам. Пятнадцатый доклад Комитета экспертов ВОЗ по биологии переносчиков и борьбе с ними. Перевод с английского. Серия технических докладов ВОЗ, N 818. Женева. Всемирная организация здравоохранения. 1995. 77 с.
- 16. Рославцева С.А. Резистентность к инсектоакарицидам членистоногих, имеющих эпидемиологическое и санитарно-гигиеническое значение. Москва. Компания Спутник+. 2006. 130 с.
- 17. Сердюкова Г.В. Иксодовые клещи фауны СССР. Москва; Ленинград. Издательство Академии наук СССР. 1956. 122 с. (Определители по фауне СССР, издаваемые Зоологическим институтом Академии наук СССР; Выпуск 64).
- 18. Тифлов В.Е., Скалон О.И., Ростигаев Б.А. Определитель блох Кавказа. Ставрополь. Ставропольское книжное издательство. 1977. 278 с.
- 19. Филиппова Н.А. Иксодовые клещи подсем. Ixodinae. Ленинград. Наука, Ленинградское отделение. 1977. 396 с. (Фауна СССР; Новая серия, N 114. Паукообразные. Том IV, выпуск 4).
- 20. Штакельберг А.А. Определитель мух Европейской части СССР. Ленинград. Издательство Академии наук СССР. 1933. 742 с. (Определители по фауне СССР, издаваемые Зоологическим институтом Академии наук СССР; Выпуск 7).
- 21. Штакельберг А.А. Синантропные двукрылые фауны СССР. Ленинград. Издательство Академии наук СССР. 1956. 163 с. (Определители по фауне СССР, издаваемые Зоологическим институтом Академии наук СССР; Выпуск 60).
- 22. CONUS manual for evaluating insecticide resistance in mosquitoes using the CDC bottle bioassay kit. Centers for Disease Control and Prevention (U.S.). Published date: April 14, 2022.
- 23. Guideline for evaluating insecticide resistance in vectors using the CDC bottle bioassay. Center for Global Health (U.S.), Division of Parasitic Diseases and Malaria. Published date 8/20/12.
- 24. Instructions for determining the susceptibility or resistance of body lice and head lice to insecticides. Geneva. World Health Organization. 1981. WHO/VBC/81.808.
- 25. Mota-Sanchez D., Bills P.S., Whalon M.E. Arthropod resistance to pesticides: status and overview. Wheeler W.B. Dekker M. (Editors). Pesticides in agriculture and the environment. New York, NY. 2002. P. 241-272.
- 26. Mota-Sanchez D., Wise J.C. The Arthropod Pesticide Resistance Database. Michigan State University. 2023.
- 27. Sparks T.C., Crossthwaite A.J., Nauen R. et al. Insecticides, biologics and nematicides: Updates to IRAC's mode of action classification a tool for resistance management. Pestic. Biochem. Physiol. 2020. Vol. 167. Article N 104587.
- 28. World Health Organization. Standard operating procedure for testing insecticide susceptibility of adult mosquitoes in WHO tube tests. SOP version: WHO Tube test/01/14 January 2022. World Health Organization. 2022.
- 29. Yoon K.S., Kwon D.H., Strycharz J.P., Hollingsworth C.S., Lee S.H., Clark J.M. Biochemical and molecular analysis of deltamethrin resistance in the common bed bug (Hemiptera: Cimicidae). J. Med. Entomol. 2008. Vol. 45. N 6. P. 1092-1101.
 - 30. Zeichner B.C. Baseline susceptibility of a laboratory strain of Pediculus humanus humanus

(Anoplura: Pediculidae) using a modified World Health Organization testing protocol. J. Med. Entomol. 1999. Vol. 36. N 5. P. 903-905.

Руководитель Федеральной службы по надзору в сфере защиты прав потребителя и благополучия человека, Главный государственный санитарный врач Российской Федерации

А.Ю. Попова